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Differentiating glioblastoma multiforme from
cerebral lymphoma: application of advanced
texture analysis of quantitative apparent
diffusion coefficients
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Abstract
Purpose: The purpose of this study was to differentiate glioblastoma multiforme from primary central nervous system

lymphoma using the customised first and second-order histogram features derived from apparent diffusion coefficients.

Methods and materials: A total of 82 patients (57 with glioblastoma multiforme and 25 with primary central nervous system

lymphoma) were included in this study. The axial T1 post-contrast and fluid-attenuated inversion recovery magnetic

resonance images were used to delineate regions of interest for the tumour and peritumoral oedema. The regions of

interest were then co-registered with the apparent diffusion coefficient maps, and the first and second-order histogram

features were extracted and compared between glioblastoma multiforme and primary central nervous system lymphoma

groups. Receiver operating characteristic curve analysis was performed to calculate a cut-off value and its sensitivity and

specificity to differentiate glioblastoma multiforme from primary central nervous system lymphoma.

Results: Based on the tumour regions of interest, apparent diffusion coefficient mean, maximum, median, uniformity and

entropy were higher in the glioblastoma multiforme group than the primary central nervous system lymphoma group

(P� 0.001). The most sensitive first and second-order histogram feature to differentiate glioblastoma multiforme from

primary central nervous system lymphoma was the maximum of 2.026 or less (95% confidence interval (CI) 75.1–99.9%),

and the most specific first and second-order histogram feature was smoothness of 1.28 or greater (84.0% CI 70.9–92.8%).

Based on the oedema regions of interest, most of the first and second-order histogram features were higher in the

glioblastoma multiforme group compared to the primary central nervous system lymphoma group (P� 0.015). The most

sensitive first and second-order histogram feature to differentiate glioblastoma multiforme from primary central nervous

system lymphoma was the 25th percentile of 0.675 or less (100% CI 83.2–100%) and the most specific first and second-order

histogram feature was the median of 1.28 or less (85.9% CI 66.3–95.8%).

Conclusions: Texture analysis using first and second-order histogram features derived from apparent diffusion coefficient

maps may be helpful in differentiating glioblastoma multiforme from primary central nervous system lymphoma.
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Introduction

Glioblastoma multiforme (GBM) and primary central

nervous system lymphoma (PCNSL) are two known

brain malignancies, with GBM being more prevalent.1

Brain magnetic resonance imaging (MRI) is a helpful

tool to identify the characteristic tumour findings and

to assess the burden of the malignant tumours,

although these findings are usually non-specific and a

tissue biopsy is almost always required to make the

diagnosis.2–4 Surgery with or without adjunct radio-

therapy or chemotherapy is the principal component
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of the standard care of GBMs,2,5 while chemotherapy
and radiotherapy are the main treatment for PCNSLs.3

Both GBM and PCNSL are hypercellular tumours and
have overlapping imaging features on brain MRI
which make it difficult, if not impossible in some
cases, to separate them apart.6 Therefore, new imaging
features are warranted to help discriminate GBMs
from PCNSLs which may direct treatment and surgical
approaches.

The apparent diffusion coefficient (ADC) values of
diffusion-weighted imaging (DWI) have been reported
to be helpful in discriminating GBM from PCNSL,7–9

although some studies did not find it useful in such a
differentiation.4,10 These conflicting results may have
arisen from different techniques used to delineate the
region of interest (ROI) on the ADC maps; for exam-
ple, Toh et al.9 selected the ROIs in the centre of the
solid enhancing areas of PCNSLs, whereas Yamashita
et al.11 and Doskaliyev et al.12 selected several ROIs
within the tumorous region. Furthermore, GBMs are
characterised with extensive intratumoral heterogene-
ity, and calculation of the mean ADC values within the
ROIs could average out the differences in spatial dis-
tribution of ADC values. All these factors make the
imaging differentiation of GBMs from PCNSLs on
MRI very challenging.

One of the unique characteristics of the GBMs is
that they harbour infiltrating cells around the tumour
bulk which is less common in PCNSLs,3 and therefore
the GBMs are expected to be more heterogeneous com-
pared to PCNSLs. Conventional MRI may not be able
to distinguish this difference; while this may be possible
using advanced quantitative methods of the ADC
maps in selected ROIs using histogram analysis.13,14

This advance histogram analysis can provide more
information about the heterogeneity of the tumour.
This technique was previously used by our group to
distinguish functional from non-functional pituitary
adenomas.15 The purpose of this study was to differ-
entiate GBMs from PCNSLs using the first and
second-order histogram (FSOH) features derived
from ADC maps of two selected ROIs, including the
tumorous region and peritumoral oedema. Our study is
technically unique because most of the previous studies
have investigated limited FSOH features,8,9,16 and only
in tumorous8,9 or peritumoral oedema regions.17,18

Materials and methods

Subjects

This research was approved by the ethics committee of
Shahid Beheshti University of Medical Sciences.
Patients were enrolled in this prospective study after
signing an informed consent form. All patients (18–
75 years old) with possible imaging findings of GBM
or PCNSL on brain MRI signed the consent form for
possible recruitment in the study, and those who were
proved to have GBM or PCNSL on post-procedural

biopsy were included in the study. Patients with biopsy

diagnosis other than GBM and PCNSL were excluded
from the study. A total of 82 patients (57 with GBM

and 25 with PCNSL) were included in this study in 3

years between 2015 and 2018 (Figure 1). All patients
with biopsy-confirmed GBM or PCNSL underwent

treatment.

Image acquisition

MRI was performed on a 1.5 Tesla scanner (Siemens,
Avanto, Rel 16.0). The MRI protocol for tumour

included pre and post-contrast axial and coronal spin-
echo T1-weighted images (repetition time (TR)/echo

time (TE)¼ 400/12 ms); axial and sagittal spin-echo

T2-weighted images (TR/TE¼ 3600/97ms); axial
fluid-attenuated inversion recovery (FLAIR) images

(TR/TE¼ 7000/117 ms, inversion time¼ 2500ms).

Axial DWI was performed using a spin-echo (TR/
TE¼ 7000/117 ms) with b-values of 0, 500 and 1000 s/

mm2 in axial directions. ADCmaps between b-values of
0 and 1000 were generated on the scanner console. The

post-contrast images were performed after the infusion

of 0.1 mmol/kg (maximum of 20 cc). For all the sequen-
ces the field of view was 210 mm2, the number of exci-

tations was two and the slice thickness was 5 mm. The

image matrix was 320� 320 for all sequences, except for
the DWI sequence, which was 192� 192.

MRI analysis

Two types of ROIs were manually delineated on ana-

tomical images by an attending neuroradiologist and
double checked by a second attending neuroradiolo-

gist: (a) tumour region, representing borders of the
enhanced regions on post-contrast T1-weighted

images in comparison with pre-contrast T1-weighted

images; and (b) peritumoral oedema on FLAIR
images (referred to as ‘oedema’ in this paper). The

tumour ROIs did not include definite cystic, necrotic,

or haemorrhagic areas. The necrosis was defined as a
non-enhancing region with cerebrospinal fluid (CSF)

signal intensity on FLAIR images. The ROIs were
selected using ImageJ software (http://rsb.info.nih.

gov/ij/) on the whole image volume encompassing the

pathogenic areas (Figure 2).
As described in detail in our previous study,15 ADC

maps were co-registered with their corresponding post-

contrast axial T1-weighted and FLAIR images using a
rigid-body intra-subject registration approach with the

normalised mutual information similarity measure and
trilinear transformation method (FMRIB’s linear

image registration tool (FLIRT), FSL Library,

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The FSOH fea-
tures were then calculated from the distribution of

ADC values within each of the ROIs. Control ADC

values were calculated from normal-appearing contra-
lateral white matter by mirroring the pathogenic ROIs.

Then, FSOH analysis was applied and selected several
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Figure 1. Flowchart of study subject recruitment.

Figure 2. Example of ROI selection and co-registration. The axial T1 post-contrast MRI image shows a biopsy-confirmed lymphoma
involving the left basal ganglia (arrows, a) with corresponding DWI sequence (c) and ADC map (d). Images were used to delineate (b) and
extract the ROIs (e) for the tumour, which were then co-registered with the ADC map (f). White boxes (b) and (f) show the control normal-
appearing contralateral parenchyma. Similar methods were used to select and co-register peritumoral ROIs in FLAIR images (instead of
T1 post-contrast).
ROI: region of interest; MRI: magnetic resonance imaging; DWI: diffusion-weighted imaging; ADC: apparent diffusion coefficient; FLAIR:
fluid-attenuated inversion recovery.
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statistical features including ADC mean, maximum,

minimum, median, normalised apparent diffusion coef-

ficient mean (NADC), standard deviation (SD),

smoothness, third moment, uniformity, entropy, kur-

tosis, the 25th, the 75th and the 95th percentiles of the

histogram were extracted. NADC was described as the

ratio of mean ADC of the selected ROI (tumour or

oedema) to that of the normal-appearing white

matter. SD shows the contrast of ROI and smoothness

represents how gray level changes in each selected ROI.

Examples of ADC map histograms for GBM and

PCNSL in the peritumoral oedema has been shown

in Figure 3.
In some of the patients it was not possible to mea-

sure the ROIs accurately for the tumour or oedema

secondary to the different appearance of the tumour

or scant amount of enhancing tumour secondary to

massive necrosis or cystic changes. Evaluation of the

ROI for tumour was possible in 70 patients (50 GBM

and 20 PCNSL) and the ROI for oedema was possible

in 47 patients (27 GBM and 20 PCNSL).

Statistical analysis

Statistical analysis was performed using MedCalc

Statistical Software version 15.8 (MedCalc Software

bvba, Ostend, Belgium; https://www.medcalc.org;

2015). Each variable was reported as mean�SD or

median and was compared between GBM and

PCNSL groups using the independent t-test or

Mann–Whitney U-test, respectively. The receiver oper-

ating characteristic (ROC) curve was created for each

FSOH feature that was significantly different between

GBM and PCNSL groups and the area under the curve

(AUC) was calculated. A cut-off point was calculated

for each FSOH feature based on the AUC and the

respective sensitivity and specificity and their 95%

confidence intervals (CIs) were calculated. A P value

less than 0.05 was considered for all statistical analyses.

Results

A total of 82 patients (52 men, 30 women) with a mean

age of 55� 1.4 years were initially included in the study.

The mean age in the GBM (54� 3.2 years) and PCNSL

(57� 4.6 years) groups was similar (P> 0.05) and male

gender (GBM: 29 men, PCNSL: 23 men) was not sig-

nificantly different between the two groups (P> 0.05).

Evaluation of ROIs for the tumour and oedema was

possible in 70 (mean age: 56� 1.5 years; 47 male, 23

female) and 47 (mean age 56� 1.4 years; 32 male, 15

female) patients, respectively.

FSOH features based on the tumour ROIs

The FSOH feature values in GBM and PCNSL groups

based on the tumour ROIs have been summarised in

Table 1. ADC mean, maximum, median, uniformity

and entropy were higher in the GBM group than the

PCNSL group (P� 0.001). The FSOH feature smooth-

ness was lower in the GBM group compared to the

PCNSL group (P¼ 0.004). There was no significant

difference in NADC, SD, third moment, kurtosis and

percentiles between the two study groups (P> 0.2).
Table 2 summarises the cut-off value, sensitivity and

specificity based on the tumour ROIs to differentiate

GBM from PCNSL. The most sensitive FSOH features

to differentiate GBM from PCNSL were the maximum

of 2.026 or less (95% CI 75.1–99.9%), followed by

mean of 1.105 or less (90% CI 68.3–98.8%) and

median of 1.035 or less (85% CI 62.1–96.8%) and uni-

formity of 331.603 or less (85% CI 62.1–96.8%). The

most specific FSOH for GBM was smoothness of 1.28

or greater (84% CI 70.9–92.8%), followed by median

Figure 3. Examples of ADC map histograms on which the X axis shows brightness intensity and the Y axis is representative of the
frequency of each brightness intensity. Histogram (a) depicts the distribution of brightness intensity of GBM peritumoral oedema and
histogram (b) shows one related to lymphoma peritumoral oedema. The difference between two histograms is obvious that may help to
differentiate these two entities.
ADC: apparent diffusion coefficient; GBM: glioblastoma multiforme.
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of 1.035 or less (76% CI 61.8–86.9%), mean of 1.105 or

less (72% CI 57.5–83.8%) (Figure 4).

FSOH features based on the oedema ROIs

The FSOH feature values in GBM and PCNSL groups

based on the oedema ROI have been summarised in

Table 3. Most of the FSOH features including mean,

minimum, median, normal mean, the percentiles (the

25th, the 75th and the 95th) were higher in the GBM

group compared to the PCNSL group (P� 0.015). A

few FSOH features such as SD, third moment and

entropy were smaller in the GBM group than the
PCNSL group (P� 0.005). There was no statistically
significant difference in maximum, smoothness, unifor-
mity and kurtosis between the two groups (P> 0.5).

The cut-off value, sensitivity and specificity based
on the oedema ROIs to differentiate GBM from
PCNSL have been summarised in Table 4. The most
sensitive FSOH features to differentiate GBM from
PCNSL were the 25th percentile of 0.675 or less
(100% CI 83.2–100%), followed by NADC of 0.726
or less (95% CI 75.1–99.9%) and mean of 1.44 or
less (90% CI 68.3–98.8%). The most specific FSOH

Table 1. Comparison of FSOH features values between GBM and PCNSL groups based on the tumour ROIs.

FSOH features Groups (N) ADC mean� SD ADC median (min, max) P value

Mean GBM (50) 1.285� 0.391 1.244 (0.112, 2.318) 0.001

PCNSL (20) 0.954� 0.136 0.986 (0.703, 1.151)

Maximum GBM (50) 2.236� 0.615 2.204 (0.256, 3.784) 0.001

PCNSL (20) 1.693� 0.267 1.687 (1.132, 2.291)

Minimum GBM (50) 0.656� 0.227 0.671 (0.080, 1.592) 0.28

PCNSL (20) 0.601� 0.113 0.632 (0.342, 0.737)

Median GBM (50) 1.262� 0.426 1.188 (0.106, 2.412) 0.001

PCNSL (20) 0.915� 0.139 0.939 (0.669, 1.129)

Normal mean GBM (50) 0.568� 0.107 0.571 (0.382, 0.888) 0.98

PCNSL (20) 0.567� 0.099 0.578 (0.373, 0.813)

Standard deviation GBM (50) 0.121� 0.031 0.115 (0.074, 0.225) 0.79

PCNSL (20) 0.118� 0.024 0.112 (0.079, 0.171)

Smoothness GBM (50) 16� 10–8� 77� 10–8 18� 10–9 (6� 10–10, 53� 10–7) 0.004

PCNSL (20) 44� 10–8� 9� 10–7 8� 10–9 (3� 10–9, 4� 10–6)

Third moment GBM (50) 0.001� 0.003 0.001 (–0.006, 0.015) 0.22

PCNSL (20) 0.002� 0.001 0.002 (1.3–4, 0.006)

Uniformity GBM (50) 499.7� 387.9 387.9 (408.9, 37.25) 0.001

PCNSL (20) 236.7� 172.0 223.9 (41.54, 731.9)

Entropy GBM (50) 6.520� 0.414 6.593 (4.888, 7.342) 0.005

PCNSL (20) 6.308� 0.301 6.351 (5.732, 6.949)

Kurtosis GBM (50) 4.777� 2.705 3.802 (2.084, 13.52) 0.55

PCNSL (20) 4.821� 2.123 4.279 (2.545, 9.870)

25th Percentile GBM (50) 0.483� 0.113 0.476 (0.203, 0.836) 0.96

PCNSL (20) 0.484� 0.105 0.493 (0.306, 0.763)

75th Percentile GBM (50) 0.638� 0.118 0.635 (0.411, 0.959) 0.8

PCNSL (20) 0.630� 0.105 0.644 (0.417, 0.861)

95th Percentile GBM (50) 0.787� 0.097 0.809 (0.565, 0.993) 0.8

PCNSL (20) 0.793� 0.095 0.814 (0.548, 0.957)

FSOH: first and second-order histogram; GBM: glioblastoma multiforme; PCNSL: primary central nervous system lymphoma; ROI: region of interest; ADC:

apparent diffusion coefficient; SD: standard deviation.

Table 2. The AUC of the ROC analysis, the cut-off value, sensitivity and specificity based on the tumour ROIs to differentiate GBM from
PCNSL.

FSOH features AUC (95% CI) SE P value Cut-off Sensitivity (95% CI) Specificity (95% CI)

Mean 0.837 (0.729, 0.914) 0.046 <0.001 �1.105 90% (68.3–98.8%) 72% (57.5–83.8%)

Maximum 0.821 (0.711, 0.902) 0.050 <0.001 �2.026 95% (75.1–99.9%) 64% (49.2–77.1%)

Median 0.840 (0.733, 0.917) 0.046 <0.001 �1.035 85% (62.1–96.8%) 76% (61.8–86.9%)

Smoothness 0.722 (0.602, 0.822) 0.071 0.002 >0 60% (36.1–80.9%) 84% (70.9–92.8%)

Uniformity 0.746 (0.628, 0.843) 0.064 <0.001 �331.6 85% (62.1–96.8%) 58% (43.2–71.8%)

Entropy 0.718 (0.598, 0.819) 0.067 0.001 �6.517 90% (68.3–98.8%) 54% (39.3–68.2%)

AUC: area under the curve; ROC: receiver operating characteristic; ROI: region of interest; SE: standard error; CI: confidence interval; GBM: glioblastoma

multiforme; FSOH: first and second-order histogram.
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for GBM were median of 1.28 or less (85.9% CI 66.3–

95.8%), followed by the 95th percentile of 0.809 or less

(85.19% CI 66.3–95.8%) and the 75th percentile of

0.708 or less (81.5% CI 61.9–93.7%) (Figure 4).

Discussion

Texture analysis is an evolving, non-invasive technique

to assess tissue characteristics in a selected ROI, which

may provide quantitative information about the mor-

phology and pathological characteristics of the investi-

gated tissue.13,19,20 MRI texture analysis has been

shown to be helpful in the differential diagnosis of dif-

ferent types of malignancies,21 as well as cognitive dis-

ease and brain tumours,7,12,14,22–25 There has been

growing attention to MRI texture analysis of brain

tumours,20 particularly advanced quantitative analysis

of the ADCs using FSOH features.14,15,25

Figure 4. Examples of the ROC curves of selected FSOH-extracted variables based on the ROIs for tumour (a) and peritumoral oedema (b).
ROC: receiver operating characteristic; FSOH: first and second-order histogram; ROIs: regions of interest.

Table 3. Comparison of FSOH features values between GBM and PCNSL groups based on the oedema ROI.

FSOH features Groups (N) Mean� SD Median (min, max) P value

Mean GBM (27) 1.416� 0.316 1.454 (0.125, 2.076) 0.001

PCNSL (20) 1.184� 0.204 1.157 (0.839, 1.525)

Maximum GBM (27) 2.020� 0.560 2.060 (0.169, 3.581) 0.9

PCNSL (20) 2.007� 0.269 2.050 (1.421, 2.461)

Minimum GBM (27) 0.739� 0.247 0.815 (0.079, 1.062) 0.015

PCNSL (20) 0.612� 0.167 0.556 (0.360, 1.024)

Median GBM (27) 1.423� 0.324 1.474 (0.125, 2.107) 0.001

PCNSL (20) 1.168� 0.236 1.139 (0.759, 1.547)

Normal mean GBM (27) 0.704� 0.106 0.736 (0.364, 0.841) 0.001

PCNSL (20) 0.584� 0.098 0.586 (0.403, 0.757)

Standard deviation GBM (27) 0.105� 0.021 0.102 (0.069, 0.159) 0.003

PCNSL (20) 0.122� 0.019 0.124 (0.082, 0.162)

Smoothness GBM (27) 39� 10–10� 92� 10–10 10� 10–10 (4.4� 10–11, 3.6� 10–8) 0.74

PCNSL (20) 3.9� 10–9� 7.9� 10–9 9.5� 10–9 (6.8� 10–11, 3.2� 10–8)

Third moment GBM (27) –0.0002� 0.002 –0.0001 (–0.007, 0.007) 0.001

PCNSL (20) 0.0008� 0.001 0.0007 (–0.001, 0.004)

Uniformity GBM (27) 2.212–3� 1.27–3 2.168E3 (2.70–2, 5.59–3) 0.56

PCNSL (20) 2.08–3� 1.46–3 1.562E3 (5.54–2, 5.34–3)

Entropy GBM (27) 6.564� 0.231 6.528 (6.115, 6.971) 0.005

PCNSL (20) 6.752� 0.201 6.784 (6.260, 7.066)

Kurtosis GBM (27) 3.531� 1.066 3.243 (2.291, 6.949) 0.59

PCNSL (20) 3.510� 1.333 3.058 (2.192, 7.679)

25th Percentile GBM (27) 0.639� 0.119 0.681 (0.254, 0.797) 0.001

PCNSL (20) 0.492� 0.103 0.498 (0.33, 0.675)

75th Percentile GBM (27) 0.775� 0.106 0.806 (0.428, 0.901) 0.001

PCNSL (20) 0.666� 0.104 0.661 (0.450, 0.831)

95th Percentile GBM (27) 0.868� 0.074 0.882 (0.694, 0.950) 0.004

PCNSL (20) 0.795� 0.090 0.799 (0.566, 0.929)

FSOH: first and second-order histogram; GBM: glioblastoma multiforme; PCNSL: primary central nervous system lymphoma; SD: standard deviation.
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These advanced features have been used to differentiate
types of brain tumours, based on their grading,14,26

location,16 progression,27 functional status of the
brain tumours,15 or even overall survival.28,29

Our study demonstrated that some of the FSOH
features of ADC measured in the tumour ROIs, includ-
ing mean, maximum, smoothness, uniformity and
entropy, were significantly different between the
GBM and PCNSL. Similar to our findings, Toh et al.
found that ADC values were higher in GBMs than
PCNSLs,9 although they only reported mean values
of ADC whereas we studied and reported more com-
prehensive ADC statistics with their cut-off values. The
difference in ADC statistics between GBM and
PCNSL have been assumed to be related to the
tumour cellularity.12 A recent study used texture anal-
ysis with different combinations of MRI images on
post-contrast T1-weighted images and T2-weighted
images and found a sensitivity of 94% to differentiate
low-grade gliomas from high-grade gliomas.30 In our
study, the maximum ADC of 2.026 or less in tumour
ROI had a sensitivity of 95% to differentiate GBM
from PCNSL and the ADC mean of 0.943 or less in
the tumour region had a specificity of 91.2%. The sen-
sitivity and specificity in our study were comparable to
previous studies,9,12,14 although there is deference in
the cut-off values among the studies, which is likely
to be due to the differences in MRI machine, software
used, ROI selection technique and image analysis tools.

Our results suggested that the FSOH features mea-
sured in the oedema ROIs may be valuable to differ-
entiate GBMs from PCNSLs with high sensitivity and
specificity. The importance of oedema analysis in the
diagnosis of malignant brain tumours was suggested
initially about 15 years ago.31 More recently, the radio-
mic features of the peritumoral T2 hyperintensity using
texture analysis in patients with pretreatment GBM
suggested incremental prognostic value of peritumoral
radiomics as a MRI biomarker in pretreatment glio-
blastoma.32 Although the lower ADC values in the
tumour region of PCNSL compared to GBM have pre-
viously been reported,8,9,33 there are only a few studies

comparing the ADC values in the peritumoral region
of PCNSL and GBM. Lu et al. recommended that
peritumoral MRI metrics may enable us to distinguish
metastatic brain tumours from gliomas.17 In contrast,
Server et al. did not find the ADC values or ratios in
the oedema region useful in differentiating gliomas,
lymphomas, metastases and high grade meningio-
mas.18 Server et al.18 studied different brain tumours
and used different techniques, which may account for
the different results from our study. There is an inverse
relationship between the ADC values and tumour cel-
lularity in gliomas and lymphomas,33 and the lower
ADC values in the peritumoral region in PCNSL
compared to GBM probably suggest greater non-
enhancing tumour and less heterogeneity in the peritu-
moral region of PCNSL than GBM, which may
initially seem counterintuitive. In contrast to our find-
ings, Ko et al. reported lower ADC values in the peri-
tumoral region of GBM compared to PCNSL, which
was thought to be due to lesser water diffusivity sec-
ondary to more infiltrating tumour cells.34 In their
study, the authors only reported mean ADC values
and only in selected ROIs of the peritumoral region,
while in our study the ROIs were delineated on the
whole image volume encompassing the pathogenic
areas, and comparison was made for several FSOH
features. These may contribute to the different findings
between the two studies. Positron emission tomogra-
phy with 18F-fluoromisonidazole (18F-FMISO) is
used to image hypoxic areas of high grade gliomas
which are resistant to radiotherapy and chemotherapy.
Texture analysis using histogram analysis of the 18F-
FMISO uptake distributions has been utilised for pre-
diction of the prognosis of patients with postsurgical
brain cancers.35

One of the limitations of this study is that the neuro-
radiologists were able to delineate oedema ROIs in
only 47 out of 82 patients (57%). Although evaluation
of FSOH features measured in the oedema ROIs
showed more promising significant findings compared
to the tumour ROIs, the feasibility of ROI delineation
may limit its clinical application. This can be improved

Table 4. The AUC of the ROC analysis, the cut-off value, sensitivity and specificity based on the oedema ROIs to differentiate GBM from
PCNSL.

FSOH features AUC (95% CI) SE P value Cut-off Sensitivity (95% CI) Specificity (95% CI)

Mean 0.820 (0.681, 0.917) 0.063 <0.001 �1.44 90.0% (68.3–98.8%) 63.0% (42.4–80.6%)

Minimum 0.709 (0.559, 0.832) 0.078 0.008 �0.758 85.0% (62.1–96.8%) 63.0% (42.4–80.6%)

Median 0.806 (0.066, 0.906) 0.067 <0.001 �1.278 70.0% (45.7–88.1) 85.9% (66.3–95.8%)

NADC 0.822 (0.683, 0.918) 0.061 <0.001 �0.726 95.0% (75.1–99.9%) 59.3% (38.8–77.6%)

Standard deviation 0.752 (0.604, 0.866) 0.075 0.001 >0.115 75.0% (50.9–91.3%) 81.5% (61.9–93.7%)

Third moment 0.780 (0.635, 0.887) 0.072 0.001 >0 80.0% (56.3–94.3%) 70.4% (49.8–86.2%)

Entropy 0.739 (0.590, 0.856) 0.073 0.001 >6.739 65.0% (40.8–84.6%) 77.8% (57.7–91.4%)

25 Percentile 0.848 (0.713, 0.936) 0.056 <0.001 �0.675 100% (83.2–100%) 59.3% (38.8 %–77.6%)

75 Percentile 0.798 (0.656, 0.901) 0.066 <0.001 �0.708 70.0% (45.7–88.1%) 81.5% (61.9–93.7%)

95 Percentile 0.748 (0.60, 0.863) 0.073 0.001 �0.809 60.5% (40.8–84.6%) 85.2% (66.3–95.8%)

AUC: area under the curve; ROC: receiver operating characteristic; ROI: region of interest; SE: standard error; CI: confidence interval; GBM: glioblastoma

multiforme; PCNSL: primary central nervous system lymphoma; FSOH: first-second order histogram; NADC: normalised apparent diffusion coefficient.
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by novel technologies and more powerful image anal-

ysis tools and can be further investigated in future

studies. The FSOH feature in this study may be inves-

tigated in the other relevant entities including brain

abscess and metastasis. The tumour ROIs in this

study did not include definite cystic, necrotic, or hae-

morrhagic areas. Tumours with greater areas of necro-

sis may be more heterogeneous and qualitative or

quantitative analysis of the necrotic area may be a

useful feature for distinguishing between GBM and

PCNSL, which can be further evaluated in future

studies.

Conclusions

In summary, FOSH features derived from ADC maps

may be helpful in differentiating brain GBM from

PCNSL. This technique may have the potential to be

incorporated into artificial intelligence interfaces and

may be beneficial in clinical decisions and treatment

planning for neurosurgical interventions of brain

tumours.
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