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Abstract 

Background: Hypertension increases the risk of angiocardiopathy and cognitive 
disorder. Blood pressure has four categories: normal, elevated, hypertension stage 1 
and hypertension stage 2. The quantitative analysis of hypertension helps determine 
disease status, prognosis assessment, guidance and management, but is not well stud-
ied in the framework of machine learning.

Methods: We proposed empirical kernel mapping-based kernel extreme learning 
machine plus (EKM–KELM+) classifier to discriminate different blood pressure grades 
in adults from structural brain MR images. ELM+ is the extended version of ELM, which 
integrates the additional privileged information about training samples in ELM to help 
train a more effective classifier. In this work, we extracted gray matter volume (GMV), 
white matter volume, cerebrospinal fluid volume, cortical surface area, cortical thick-
ness from structural brain MR images, and constructed brain network features based 
on thickness. After feature selection and EKM, the enhanced features are obtained. 
Then, we select one feature type as the main feature to feed into KELM+, and the rest 
of the feature types are PI to assist the main feature to train 5 KELM+ classifiers. Finally, 
the 5 KELM+ classifiers are ensemble to predict classification result in the test stage, 
while PI is not used during testing.

Results: We evaluated the performance of the proposed EKM–KELM+ method using 
four grades of hypertension data (73 samples for each grade). The experimental results 
show that the GMV performs observably better than any other feature types with a 
comparatively higher classification accuracy of 77.37% (Grade 1 vs. Grade 2), 93.19% 
(Grade 1 vs. Grade 3), and 95.15% (Grade 1 vs. Grade 4). The most discriminative brain 
regions found using our method are olfactory, orbitofrontal cortex (inferior), supple-
mentary motor area, etc.

Conclusions: Using region of interest features and brain network features, EKM–
KELM+ is proposed to study the most discriminative regions that have obvious 
structural changes in different blood pressure grades. The discriminative features that 
are selected using our method are consistent with the existing neuroimaging studies. 
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Moreover, our study provides a potential approach to take effective interventions in the 
early period, when the blood pressure makes minor impacts on the brain structure and 
function.

Keywords: Hypertension, Magnetic resonance imaging (MRI), Kernel extreme learning 
machine plus (KELM+), Empirical kernel mapping (EKM), Regions of interest (ROI) 
features, Brain network features

Background
Hypertension is one of the risk factors for cognitive dysfunction. According to the epi-
demiological survey, the global incidence of hypertension in 2000 was about 26.4%, 
affecting 972 million people worldwide. By 2025, the number of people affected by 
hypertension is to increase by 60% to 1.56 billion [1]. A long-term follow-up of elderly 
patients at risk for cardiovascular disease found that the patient’s blood pressure (BP) 
variability affects the patient’s cognitive function [2]. A latitudinal investigation dem-
onstrates that high systolic blood pressure (SBP), high diastolic blood pressure (DBP) 
and persistent hypertension can accelerate the decline of cognitive function, as well as 
increase the incidence of dementia [3]. Longitudinal studies have found that antihyper-
tensive therapy can effectively reduce the incidence of cognitive dysfunction [4]. Exces-
sive BP can cause cerebral vascular damage, which in turn causes white matter and 
gray matter ischemic or hemorrhagic damage [5], while white matter and gray matter 
ischemia can cause brain atrophy and leukoaraiosis. All these studies indicate that high 
BP may affect cognitive function.

Hypertension can be classified by severity. The classification scheme for hypertension 
helps determine the condition, quantify the risk, evaluate the prognosis and guide the 
management [6]. The “2017 American College of Cardiology/American Heart Associa-
tion (2017 ACC/AHA) Guideline for the Prevention, Detection, Evaluation, and Man-
agement of High Blood Pressure in Adults” recently recommended a new categorization 
for BP grades. This new guideline commends that BP should be classified in four catego-
ries: normal (Grade 1), elevated (Grade 2), hypertension stage 1 (Grade 3) and 2 (Grade 
4). And defined hypertension as a SBP of ≥ 130  mmHg and/or a DBP of ≥ 80  mmHg, 
reducing the former SBP and DBP by 10  mmHg (a SBP of ≥ 140  mmHg and/or DBP 
of ≥ 90  mmHg [7]). The research of Ettehad [8] and Xie et  al. [9] also supported this 
BP ≥ 130/80 mmHg as critical value of hypertension intervention.

The overall situation of prevention and control of hypertension in China is severe. At 
present, Chinese diagnostic criteria of hypertension is still BP ≥ 140/90 mmHg. Accord-
ing to the 2017 ACC/AHA new diagnostic criteria of hypertension, China will add 
another 100 million hypertensive patients. Treatment in the early stages of disease devel-
opment may help prevent the development of cardiovascular disease and reduce the risk 
and complications of hypertension [10, 11]. It is necessary for us to learn from the 2017 
ACC/AHA guidelines, which is of great significance for the prevention and control of 
hypertension as well as the entire chronic patient population in China.

The purpose of this study is using machine learning to explore the relationship 
between BP grades and brain structural changes. Magnetic resonance (MR) imag-
ing, a safe and effective means, plays an important role in revealing brain abnormali-
ties. ROI-based analysis has been widely used [12]. Maaike et al. [13] used voxel-based 



Page 3 of 19Yu et al. BioMed Eng OnLine          (2019) 18:124 

morphometry to study the gray matter and white matter volume of hypertension, reveal-
ing the relationship between hypertension and anterior cingulate cortex (ACC), lower 
forehead (IFG) and hippocampal volume. Studies of structural abnormalities in the 
brain based on MR images of hypertensive patients have shown that brain atrophy and 
brain tissue lesions often occurred in gray matter and white matter [14, 15], affecting the 
transport of nutrients to neurons and leading to the decline of cognitive function [16]. 
From MR-related studies, it is known that gray matter damages appeared in the pre-
frontal cortex, hippocampus, lower jaw, and inferior parietal lobe, white matter lesions 
mainly occurs in the frontal area [17, 18]. Peter et al. [19] demonstrated that atrophy of 
the auxiliary motor areas, superior frontal gyrus, anterior cingulate cortex and middle 
temporal lobe is associated with hypertension. In addition, high BP gives rise to atrophy 
of the medial temporal lobe, which plays an important role in cognitive development 
[20]. Detection of hypertension-related brain regions is of great value in clinical and aca-
demic studies. Those researches above have only studied hypertension brain morphom-
etry. Their subjects consist of normal group and hypertension group whose diagnostic 
criterion is BP ≥ 140/90 mmHg. And less use automated classification to extract hyper-
tension-related brain regions. Therefore, more studies are needed to further explain the 
relationship between BP grades and brain morphometry.

In this paper, we examined the hypertension-related brain morphometry in regions of 
interest (ROIs) using features, which consist of ROI features and brain network features. 
ROI features were extracted from the brain structural MR images including gray matter 
volume (GMV), white matter volume (WMV), cerebrospinal fluid volume (CSFV), corti-
cal thickness (Thickness), and cortical surface area (Area). Brain network features were 
constructed by computing the correlation index of cortical thickness values between 
ROIs. The two feature types complement each other in revealing neuroanatomical infor-
mation about hypertension.

Due to the complexity of brain diseases, the use of single information cannot fully 
represent the disease characteristics in process of the diagnosis. For this reason, com-
prehensive consideration of multiple information is required. Learning Using Privileged 
Information (LUPI), a new learning paradigm for classifier proposed by Vapnik and 
Vashist, can be a good way to solve this problem. The privileged information (PI) is only 
available during the training phase of model, but unavailable during the testing phase 
[21]. PI can help establish better prediction rules by providing additional information to 
training samples. It has become a trend for researchers to embed LUPI paradigm in dif-
ferent classifiers, such as the support vector machine plus (SVM+) and random vector 
functional link network plus (RVFL+) [22], which usually achieves improved classifica-
tion performance [21].

The proposed kernel-based ELM+ (KELM+) is developed based on kernel-based 
RVFL+ (KRVFL+) [22]. ELM and RVFL, two kinds of classifiers based on single-layer 
feed-forward neural network (SLFN) [23], have received extensive attention in recent 
years. With high approximation ability, good generalization performance and very fast 
training time, ELM is widely used for a variety of classification tasks [24]. However, 
random affine transformation in ELM+ usually causes prediction instability. To this 
end, we propose a KELM+ algorithm to overcome this problem and improve perfor-
mance. KRVFL+ outperforms SVM+ on several benchmark datasets [22]. In view of the 
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nuances of ELM and RVFL, we also consider that KELM+ outperforms SVM+ in the 
network structure.

Empirical kernel mapping (EKM), one of the kernel methods, can map raw data to 
a high-dimensional data space via the inner-product forms [25], which works as the 
implicit kernel mapping (IKM) [25]. EKM overcomes the limitations of traditional IKM 
on inner-product calculation, and can explicitly map samples to feature space. In the 
meanwhile, it can fully retain the structural characteristics of data [26].

In this study, we proposed an EKM-based KELM+ (EKM–KELM+) method, which 
can be used to investigate brain structural differences in different grades of BP. Specif-
ically, first EKM performed on six types of feature to generate six enhanced features. 
Then, one type of feature is selected as the main feature, and the other five features are 
used as PI, together with the main feature to form five feature pairs, which are built to 
train five individual KELM+ classifiers. Finally, ensemble learning is performed on the 
KELM+ classifiers to give the classification result.

The main contributions of the method are twofold: (1) by transforming the origi-
nal features to high-dimensional to form enhancement features through EKM, EKM–
KELM+ has a more meaningful input layer in the neural network, which help improving 
classification performance; (2) instead of using simple multi-level ROI for mixed fea-
ture selection, one soft tissue feature is selected as main feature, and the other five fea-
tures are used as PI to assist the classifiers training. Only the main feature is used in the 
testing. The most discriminative brain regions, which have structural changes affected 
by hypertension, can be found using our method. This can also help us to analyze the 
changes of specific brain regions in BP from grade 2 to grade 4. Moreover, our study pro-
vides a potential approach to take effective interventions in the early period, when the 
BP has minor impacts on the brain structure and function.

Results
The proposed EKM–KELM+ algorithm is compared with the following algorithms: (1) 
SVM classifier with Radial Basis Function (RBF) kernel is used for every ROI feature; (2) 
KELM classifier is used for every ROI feature; (3) KELM+ without EKM.

In this experiment, the fivefold cross-validation (CV) strategy was conducted; for each 
round of CV, the performance of the model can be calculated separately, which reduces 
the variance of the evaluation. The classification accuracy (ACC), sensitivity (SEN), 
specificity (SPC), Youden index (YI), positive predictive value (PPV), negative predictive 
value (NPV) and F1-score (F1) are used as evaluation indices. Our classification results 
were presented in the form of mean ± SD.

Classification performance

Table 1 gives the classification performance using different feature types between Grade 
1 and Grade 2, Grade 1 and Grade 3 and Grade 1 and Grade 4. For Grade 1 and Grade 
2; in the comparison of different feature types, the cortical thickness performs worst in 
all feature types. It is found that the GMV performs observably better than any other 
volumetric features (i.e., WMV and CSFV) with a comparatively higher classifica-
tion accuracy of 76.73%, sensitivity of 78.73%, and specificity of 75.14%. Similarly, cor-
tical thickness performs worst and GMV performs best with an accuracy of 93.19%, 
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sensitivity of 93.14%, and specificity of 93.23% in Grade 1 and Grade 3. In Grade 1 and 
Grade 4 group, GMV has the highest classification accuracy of 95.15%, sensitivity of 
97.14%, and specificity of 93.14%, while WMV performs worst.

It can be seen from Table 1 that all the best results are achieved on GMV. It means that 
the high BP group and the normal BP group have more differences in GMV than in oth-
ers. On every type of feature, the classification accuracy increases with the increase of 
BP grade, which indicates that higher BP will aggravate the change of ROI feature.

Table 2 gives the classification results of different algorithms on the different feature 
types. It can be found that the proposed EKM–KELM+ outperforms all the compared 
algorithms.

Experiment on kernel type

Different kernel function types represent different ways of data mapping. Polynomial 
kernel, RBF kernel, and linear kernel are mostly used kernel types. In this study, we used 
RBF kernel and linear kernel. We chose the most suitable kernel function type through 
experiments to achieve the best classification performance. Classification results of 
Grade 1 vs. Grade 4, using EKM–KELM+ with different kernel types (RBF kernel or 
linear kernel of EKM & KELM+) on the GMV feature are shown in Fig. 1. Experimental 

Table 1 Classification performance using different feature types between  Grade 1 
and Grade 2, Grade 1 and Grade 3 and Grade 1 and Grade 4 (mean ± std, UNIT: %)

GMV gray matter volume, WMV white matter volume, CSFV cerebrospinal volume, thickness, cortical thickness, Area cortical 
surface area, ACC  accuracy, SEN sensitivity, SPC specificity, PPV positive predictive value, NPV negative predictive value, YI 
Youden’s index, F1 F1‑score

GMV WMV CSFV Thickness Area

Grade 1 and Grade 2

ACC 76.73 ± 4.39 73.20 ± 5.13 76.63 ± 6.04 70.52 ± 4.84 75.98 ± 2.18

SEN 78.73 ± 6.43 75.97 ± 6.99 79.56 ± 12.17 58.21 ± 21.23 77.19 ± 5.53

SPC 75.14 ± 13.01 70.75 ± 12.48 73.19 ± 13.99 81.75 ± 20.80 75.03 ± 4.17

PPV 75.58 ± 9.33 71.41 ± 6.66 75.08 ± 9.47 80.88 ± 14.18 74.10 ± 2.02

NPV 79.59 ± 3.29 76.04 ± 6.25 81.33 ± 11.09 69.74 ± 7.51 78.24 ± 4.64

YI 53.88 ± 7.85 46.72 ± 10.51 52.75 ± 11.40 39.96 ± 8.63 52.23 ± 4.55

F1 76.52 ± 3.06 73.20 ± 3.07 76.49 ± 5.49 63.82 ± 11.27 75.45 ± 2.19

Grade 1 and Grade 3

ACC 93.19 ± 4.01 83.70 ± 6.97 80.87 ± 5.97 80.05 ± 5.56 83.69 ± 8.50

SEN 93.14 ± 0.26 78.38 ± 10.62 86.38 ± 8.47 76.76 ± 5.97 83.71 ± 9.89

SPC 93.23 ± 8.16 89.24 ± 10.06 75.33 ± 7.63 83.42 ± 6.72 83.62 ± 7.92

PPV 93.70 ± 7.22 88.64 ± 9.82 77.92 ± 6.37 82.41 ± 6.16 83.66 ± 7.47

NPV 93.11 ± 0.55 80.86 ± 8.59 85.35 ± 9.13 78.16 ± 5.92 83.99 ± 8.97

YI 86.38 ± 8.07 67.62 ± 14.06 61.71 ± 11.87 60.19 ± 11.09 67.33 ± 16.07

F1 93.31 ± 3.65 82.68 ± 7.27 81.80 ± 5.95 79.41 ± 5.38 83.61 ± 8.81

Grade 1 and Grade 4

ACC 95.15 ± 3.98 82.93 ± 4.56 88.24 ± 5.50 86.91 ± 5.43 84.27 ± 3.14

SEN 97.14 ± 3.91 80.76 ± 7.69 88.95 ± 6.45 86.19 ± 5.23 83.52 ± 3.61

SPC 93.14 ± 4.72 85.04 ± 7.13 87.52 ± 6.15 87.71 ± 7.71 85.05 ± 5.53

PPV 93.40 ± 4.73 84.59 ± 5.85 87.84 ± 5.37 87.69 ± 7.74 85.15 ± 4.62

NPV 97.14 ± 3.91 81.98 ± 5.08 88.83 ± 6.17 86.45 ± 5.10 83.84 ± 3.71

YI 90.28 ± 7.85 65.81 ± 9.31 76.47 ± 11.08 73.90 ± 10.99 68.57 ± 6.24

F1 95.21 ± 4.00 82.42 ± 5.23 88.33 ± 5.44 86.83 ± 5.43 84.17 ± 2.36
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results show that the kernel function has an important impact on the performance of the 
classification. Using RBF kernel for EKM and KELM+ can achieve the best classification 
performance, which reflects the robustness of our method. The RBF kernel function is 
commonly used as the kernel functions for the reason that is has good anti-interference 
ability for noise in the data.

The most discriminative features

The most discriminative features are selected from ROI features and brain network fea-
tures, respectively. The top 10 of the most discriminative ROI features and brain network 
features for Grade 2, Grade 3 and Grade 4 compared with Grade 1 are listed in Table 3.

For Grade 2 compared with Grade 1, the top 10 of the most discriminative ROI fea-
tures are mainly distributed in frontal lobe [inferior frontal gyrus (opercular) right, 
olfactory right], temporal lobe (bilateral superior temporal gyrus, middle temporal gyrus 

Table 2 Comparison with  different types of  features using different algorithms 
on classification accuracy (mean ± std, UNIT: %)

GMV WMV CSFV Thickness Area

Grade 1 and Grade 2

SVM 60.90 ± 7.21 58.21 ± 5.56 58.90 ± 9.67 54.09 ± 8.96 54.81 ± 8.52

KELM 70.47 ± 6.11 66.40 ± 4.11 67.75 ± 4.95 68.49 ± 4.32 70.49 ± 3.58

KELM+ 74.34 ± 5.40 69.85 ± 4.57 73.89 ± 5.52 73.32 ± 9.42 69.85 ± 6.63

EKM–KELM+ 76.73 ± 4.39 73.20 ± 5.13 76.63 ± 6.04 70.52 ± 4.84 75.98 ± 2.18

Grade 1 and Grade 3

SVM 78.13 ± 6.41 66.47 ± 5.27 61.11 ± 10.89 67.70 ± 8.81 69.27 ± 9.69

KELM 82.24 ± 7.19 72.70 ± 7.42 69.87 ± 4.88 77.99 ± 7.15 74.77 ± 11.24

KELM+ 89.05 ± 4.40 80.29 ± 7.28 77.46 ± 4.74 78.70 ± 5.97 83.67 ± 8.10

EKM–KELM+ 93.19 ± 4.01 83.70 ± 6.97 80.87 ± 5.97 80.05 ± 5.56 83.69 ± 8.50

Grade 1 and Grade 4

SVM 87.65 ± 3.93 72.63 ± 5.72 76.61 ± 5.04 78.61 ± 8.03 71.92 ± 3.56

KELM 88.98 ± 6.20 80.82 ± 7.91 83.48 ± 3.37 80.75 ± 5.52 84.20 ± 5.87

KELM+ 92.43 ± 3.00 82.25 ± 5.42 86.22 ± 3.78 86.91 ± 5.43 84.22 ± 3.92

EKM–KELM+ 95.15 ± 3.98 82.93 ± 4.56 88.24 ± 5.50 86.91 ± 5.43 84.27 ± 3.14

Fig. 1 Classification results of Grade 1 vs. Grade 4, using EKM–KELM+ with different kernel types (EKM and 
KELM+) on the GMV feature
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Table 3 Top 10 of the most discriminative ROI features and correlative features that were 
selected using the proposed classification framework

R right hemisphere, L left hemisphere

No. ROI features Frequency Correlative features Frequency

Grade 1 and Grade 2

1 Orbitofrontal cortex (superior)_R 25 Inferior frontal gyrus (opercular)_L-inferior 
frontal gyrus (opercular)_R

5

2 Superior temporal gyrus_R 25 Inferior frontal gyrus (opercular)_L-insula_R 5

3 Middle temporal gyrus_L 23 Inferior frontal gyrus (opercular)_L-anterior 
cingulate gyrus_R

5

4 Angular gyrus_L 22 Inferior frontal gyrus (opercular)_L-
precuneus_R

5

5 Precuneus_R 22 Superior parietal gyrus_L-precuneus_R 5

6 Superior temporal gyrus_L 22 Inferior frontal gyrus (opercular)_L-
caudate_L

5

7 Supramarginal gyrus_L 21 Posterior cingulate gyrus_L-pallidum_R 5

8 Angular gyrus_R 21 Orbitofrontal cortex (superior)_L-inferior 
frontal gyrus (opercular)_L

4

9 Temporal pole (superior)_R 21 Inferior frontal gyrus (opercular)_L-inferior 
frontal gyrus (triangular)_L

4

10 Inferior frontal gyrus (opercular)_R 20 Inferior frontal gyrus (opercular)_L-anterior 
cingulate gyrus_L

4

Grade 1 and Grade 3

1 Rolandic operculum_R 25 Superior frontal gyrus (medial) _R-posterior 
cingulate gyrus_L

5

2 Rectus gyrus_R 24 Olfactory_L-parahippocampal gyrus_R 5

3 Insula_R 24 Rolandic operculum_L-cuneus_L 5

4 Superior-temporal gyrus_L 24 Olfactory_L-superior occipital gyrus _L 5

5 Superior frontal gyrus (dorsal) _L 23 Superior frontal gyrus (medial) _L-superior 
occipital gyrus _L

5

6 Orbitofrontal cortex (superior) _L 23 Cuneus_L-fusiform gyrus_R 5

7 Superior temporal gyrus _R 23 ParaHippocampal gyrus_R-superior parietal 
gyrus _R

5

8 Inferior temporal gyrus _L 23 Posterior cingulate gyrus_L-supramarginal 
gyrus _L

5

9 Orbitofrontal cortex (medial) _R 22 Superior occipital gyrus_L-supramarginal 
gyrus _L

5

10 Middle temporal gyrus _R 21 Superior occipital gyrus_L-precuneus_R 5

Grade 1 and Grade 4

1 Superior temporal gyrus_L 25 Inferior frontal gyrus (opercular) _R-middle 
cingulate gyrus _R

5

2 Superior frontal gyrus (dorsal) _L 23 Orbitofrontal cortex (medial) _R-posterior 
cingulate gyrus_L

5

3 Orbitofrontal cortex (superior) _R 23 Middle cingulate gyrus_R-middle occipital 
gyrus _L

5

4 Inferior frontal gyrus (triangular) _L 22 Posterior cingulate gyrus_L-angular gyrus_L 5

5 Supplementary motor area_L 22 Middle cingulate gyrus_L-paracentral 
lobule _R

5

6 Supplementary motor area_R 22 Inferior frontal gyrus (opercular) 
_R-putamen_L

5

7 Rectus gyrus_R 22 Superior frontal gyrus (medial) 
_R-putamen_L

5

8 Superior temporal gyrus_R 22 Orbitofrontal cortex (medial) _L-putamen_L 5

9 Middle frontal gyrus_L 21 Hippocampus_L-putamen_L 5

10 Orbitofrontal cortex (inferior) _L 21 ParaHippocampal gyrus_L-putamen_L 5
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left), limbic lobe (temporal pole (superior) right), and parietal lobe (bilateral angular 
gyrus, precuneus right, supramarginal gyrus left).

For Grade 3, the main distribution of the top 10 discriminative ROI features is in 
frontal lobe (rectus gyrus right, superior frontal gyrus (dorsal) left, orbitofrontal cor-
tex (superior) left, orbitofrontal cortex (medial) right), temporal lobe (bilateral superior 
temporal gyrus, bilateral Inferior temporal gyrus, bilateral middle temporal gyrus), bilat-
eral Insula, and central region (rolandic operculum right), which compared with Grade 
1.

As for Grade 4, the top 10 of the most discriminative ROI features are found in frontal 
lobe (superior frontal gyrus (dorsal) left, bilateral orbitofrontal cortex (superior), bilat-
eral orbitofrontal cortex (inferior), bilateral supplementary motor area, inferior frontal 
gyrus (triangular) left, bilateral middle frontal gyrus, rectus gyrus right), and temporal 
lobe (bilateral superior temporal gyrus).

Figure  2 shows the results of projecting the most discriminative ROI features (top-
10) onto the cortical surface. Three connection graphs of the most discriminative brain 
network features for three groups are shown in Fig. 3 (top-20), which are generated by 
Circos software [27]. Thicker line in the connection graph indicates stronger connec-
tion between ROIs, while thinner line implies weaker connection. The red lines rep-
resent brain connections in the same hemisphere, while the gray lines represent brain 

GMV

Grade1 vs Grade2

WMV

Grade1 vs Grade2

CSFV

Grade1 vs Grade2

Grade1 vs Grade3 Grade1 vs Grade4

Grade1 vs Grade3 Grade1 vs Grade4

Grade1 vs Grade3 Grade1 vs Grade4

Less discriminating More discriminating

Thickness

Area

Grade1 vs Grade2 Grade1 vs Grade3 Grade1 vs Grade4

Grade1 vs Grade4
Grade1 vs Grade3Grade1 vs Grade2

Fig. 2 The ROIs with statistically significant decline on volume (GMV, WMV, CSFV), cortical thickness, and 
surface area are shown. The GMV, WMV, CSFV, thickness, and area were encoded by the color from yellow 
(small, thin) to red (large, thick) (for interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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connections in different hemispheres of the brain. As we can see in lower grade of BP, the 
most discriminative brain network features are mainly distributed in left hemisphere. As 
the BP increases, the features will be gradually distributed in the right hemisphere and 
finally across both the right and left sides of the brain and almost across all brain regions, 
including frontal lobe, occipital lobe, limbic lobe, parietal lobe, sub-cortical gray nuclei, 
and central region. Moreover, regions in the bilateral frontal lobes and limbic lobes show 
close internal relation. That is, the most sensitive biomarkers of hypertension are mainly 
distributed in frontal lobe and limbic region.

Discussion
In this work, the proposed EKM–KELM+ algorithm can help study the brain struc-
tural differences associated with BP grades and achieve effective classification results. Its 
effectiveness is demonstrated on datasets of different BP grades.

Grade 1 vs Grade 2 Grade 1 vs Grade 3

Grade 1 vs Grade 4
Fig. 3 Connection graphs of the most discriminative brain network features (top 20-correlated features) for 
three groups. Red color lines indicate relation in the same hemisphere, and gray color lines indicate relation 
in the two sides of the brain. Thickness of each line reflects its selection frequency, e.g., a thicker line indicates 
a higher selection frequency
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Improvement of the proposed method

Due to the complexity of brain diseases, the use of multiple anatomical MRI measures 
can provide more information to help research the disease. Although the proposed 
EKM–KELM+ algorithm is based on the LUPI paradigm that required additional 
modality for PI in previous work, we successfully performed EKM–KELM+ on multi-
parameter information of single-modality neuroimaging data in this work. In fact, 
GMV, WMV, CSFV, thickness and area are extracted from structural brain MRI, brain 
network features are computed based on cortical thickness between ROIs. During the 
training phase, the five feature pairs are built to train five individual KELM+ models. 
While in testing phase, only one type of feature, extracting from structural brain MR 
images, will be directly fed to the well-trained KELM+ models to give the final clas-
sification result, which is flexible and convenient. The use of EKM before KELM+ 
results in data obtaining a more powerful expression, which improves the classifica-
tion performance.

A well-classified performance and discriminative features reported in our study 
are important in clinical studies. By using our model, we can classify hypertension 
patients as with and without structural brain changes. Clinicians can give the targeted 
recommendations for initiation of treatment for these two types of patients. It con-
forms more with the principles of hypertension treatment.

The current studies on hypertension are all in the population with SBP ≥ 140 mmHg 
or DBP ≥ 90 mmHg (Grade 4), to find specific brain regions related to hypertension. 
However, these studies have some shortcomings. They only explain the relationship 
between hypertension and the relevant brain regions in a general way, which has not 
considered the network activity of specific brain regions. We have fixed the deficiency 
of these existing methods by using quantitative analysis. This can provide information 
of both isolated ROI and brain connectivity between pairs ROIs, and help us under-
stand the change pattern of brain morphological in different BP grades.

Analysis of discriminative ROIs

We performed t test between different groups and counted the number of ROIs with 
significant changes (p value < 0.05) of each feature type. Figure 2 shows the results of 
projecting the most discriminative ROI features (top 10) onto the volumetric and cor-
tical. The GMV, cortical thickness, and surface area encoded by the color from yellow 
(larger, thicker) to red (smaller, thinner).

For all groups, the most discriminative ROI features include GMV, WMV, CSFV, 
Thickness, and Area. The most conspicuous regions of GMV reduction are found in 
frontal lobe, limbic lobe, temporal lobe, parietal lobe, central region, and occipital 
lobe. The most obvious regions of WMV reduction are in frontal lobe, parietal lobe, 
occipital lobe, sub-cortical gray nuclei, and limbic lobe. The most evident regions of 
Thickness volume reduction are frontal lobe, occipital lobe, limbic lobe, parietal lobe, 
and temporal lobe. The higher the BP, the more reduction of brain tissue occurred. 
In insula and sub-cortical gray nuclei, the CSFV has positive correlation with the 
increase of BP. All critical regions are known to be strongly involved in the patho-
physiological mechanisms of hypertension.
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Comparison with other methods

Studies have shown that high SBP, high DBP and persistent high BP will lead to 
cognitive impairment [28]. Morphological studies have shown that different cogni-
tive dysfunction manifestations (such as overall cognitive function, executive abil-
ity, memory impairment) are associated with structural changes in specific brain 
regions. Researchers [29] found that hypertension patients showed atrophy of the 
prefrontal and hippocampus, while the prefrontal cortex was closely related to exec-
utive ability, emotional processing ability, and social cognition. Blood flow in the 
posterior parietal region of hypertensive patients increased less than that of non-
hypertensive patients when they completed the memory task, which indicates that 
hypertension may damage cognitive function by reducing local cerebral blood flow 
[30]. Elevated BP is associated with more executive function impairment than mem-
ory, which shows a significant decrease compared with the executive function of the 
non-hypertensive group [31]. Functional magnetic resonance imaging (fMRI) and 
diffusion tensor imaging (DTI) on 1007 elderly populations (including 405 hyperten-
sive patients) are used to find that impaired executive function and decreased atten-
tion caused by hypertension may be associated with decreased white matter integrity 
and decreased functional connectivity of the frontotemporal lobe. In addition, corti-
cal gray matter atrophy is closely related to executive dysfunction [32]. Hypertension 
can also cause atrophy of the medial temporal lobe, which plays an important role in 
cognitive formation [20].

Since there have been few reports on the automatic classification of hypertension 
grades, we only compared the brain regions that are differentiated in our results with 
existing hypertension-related morphological studies. Our results also examined the 
frontal lobe (bilateral orbitofrontal cortex (superior), superior frontal gyrus (dorsal) 
left, rectus gyrus right), temporal lobe (bilateral superior temporal gyrus, middle 
temporal gyrus left), central region (rolandic operculum right), insula right, limbic 
lobe (hippocampus), sub-cortical gray nuclei (thalamus), and parietal lobe (precu-
neus right) associated with elevated BP. It is consistent with current morphologi-
cal studies, demonstrating the effectiveness of our classification method in revealing 
hypertension-related brains. Meanwhile, the central region and insula, which have 
not been reported in previous hypertension-related studies, were found in our study. 
Further research is needed to rule out false positives in our results. It can be found 
that the discriminative ROIs are mostly located in frontal lobe, which is mainly 
responsible for planning, sequencing and organizing attention, moral judgment and 
self-control behaviors. This is consistent with the fact that high blood pressure can 
cause cognitive damages.

Limitations

Despite the excellent classification performance, our method still has some limita-
tions. First, as a pilot study, we use a relatively small amount of data during machine 
learning. Second, since our study is based on a universality, the age of subjects is not 
limited to a specific range. We can take these elements into consideration for further 
improving the experiment in the future research.
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Conclusion
In summary, the proposed Empirical Kernel Mapping-Based Kernel ELM+ frame-
work can be used in studying the changes of brain structure associated with blood 
pressure by a quantitative way. One type of feature is used as the main feature, and 
other different feature types are used as PI. Finally, the result is obtained by ensem-
ble learning. Compared with other algorithms, our method has the best classification 
accuracy, which can provide more accurate early intervention identification meth-
ods and potential guiding significance for the treatment of hypertension patients. 
The ROI features and the brain network features can be used to locate specific brain 
regions that process hypertension. The discriminative features selection by EKM–
KELM+ is consistent with existing structural studies. Moreover, our study provides 
an important step in investigating brain structure and brain connective changes asso-
ciated with hypertension, which offers a potential research direction to further study 
the mechanisms basis of the cognitive neuroscience of hypertension.

Materials and methods
Participants

The structural MRI data utilized in this study were obtained from the Suzhou Science 
and Technology town hospital that consist 292 adults, aged from 25 to 76 years. The 
study is approved by the Ethics Committee of the Third Affiliated Hospital of Soo-
chow University. According to the “2017 American College of Cardiology/American 
Heart Association (2017 ACC/AHA) Guideline for the Prevention, Detection, Evalu-
ation, and Management of High Blood Pressure in Adults”, we classified the data as 
four grades: Grade 1, Grade 2, Grade 3, and Grade 4 (more details in Table 4). Each 
grade includes 73 subjects. Each participant received a structured clinical interview 
by a psychiatrist to rule out smoking, secondary hypertension, traumatic head injury, 
diabetes, and congestive heart failure or pulmonary disease. Characteristics of all 
subjects are shown in Table 5.

All images were collected on a Ingenia 3.0T PHILIPS Medical Systems equipment 
with a standard head coil. The scanning parameters are as follows: repetition time 
(TR) = 7.90 ms, echo time (TE) = 3.50 ms, flip angle (FA) = 8°, slice thickness = 1 mm, 
field of view (FOV) = 250 mm and voxel dimensions 1.0 mm isotropic.

Image process

All structural brain MR images were processed using BrainLab software [33], running 
automatically on Linux platform: (1) the original brain MR images were re-sampled in 

Table 4 Four grades according to 2017 ACC/AHA

BP blood pressure, SBP systolic blood pressure, DBP diastolic blood pressure

Grade BP category SBP (mmHg) DBP (mmHg)

Grade 1 Normal < 120 and < 80

Grade 2 Elevated 120–129 and < 80

Grade 3 Hypertension stage 1 130–139 and/or 80–89

Grade 4 Hypertension stage 2 > 140 and/or ≥ 90

Hypertension crisis > 180 and/or > 120
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terms of direction, voxel size and volume according to right-hand rules. N3 bias field 
correction is to eliminate intensity non-uniformity [34]. (2) 3D deformable-surface-
based brain extraction algorithm [35] removed non-brain tissue from the preprocessed 
images. (3) Level-set-based tissue segmentation algorithm [36] was used to separate 
GMV, WMV, CSFV, and background by limiting thickness to a biologically reasonable 
range with 1–6.5 mm. (4) Then, the tissue segmented images are registered to the brain 
atlas using a non-rigid matching algorithms derived from a concept of diffusing models 
[37]. The brain atlas is based on the Automated Anatomical Labeling (AAL) template 
with 45 labeled ROIs for each hemisphere [38]. (5) A deformable surface method accu-
rately reconstructs inner, central, and outer cortical surfaces [39]. (6) ROI volume and 
cortical thickness were measured, respectively, according to the amount of voxels.

Finally, we obtained 90 cortical ROIs [40]. We computed the GMV, WMV, CSFV, 
Thickness, and Area for each ROI.

Feature extraction and selection

Two types of features are used in this paper: ROI features and brain network features. 
The ROI features are extracted from the brain structural MR images including GMV, 
WMV, CSFV, Thickness and Area. Considering individual differences, the GMV, WMV, 
CSFV of each ROI are normalized according to the total brain volume of each subject 
[41], and the cortical thickness and cortical surface area of each ROI are normalized 
according to the standard deviation and the total cortical surface area of each subject.

Brain network features have been widely used in recent years for neuroimaging-based 
analysis of brain disease. The brain network features consist of Pearson correlation coef-
ficient which are computed based on cortical thickness between ROIs. Because sub-
cortical regions are not researched in this study, we neglected 12 sub-cortical ROIs of 
90 cortical ROIs in the calculation [35], and finally got the 78 × 78 correlation matrix. 
The upper triangular elements of the matrix are used to construct the feature vector 
(3003-dimensional) for each subject.

Furthermore, statistical t test is first adopted to select the features with their p val-
ues less than 0.05. Then, on the basis of t test, mutual information method is further 
used to reduce feature dimensionality and improve feature representation. After the two 
feature selection steps, we obtained the optimal feature subsets for each feature type, 
respectively.

Table 5 Characteristics of all subjects

SBP systolic blood pressure, DBP diastolic blood pressure

Grade 1 Grade 2 Grade 3 Grade 4

Number of subjects 73 73 73 73

(Male/female) (33/40) (37/36) (30/43) (31/42)

Age 40.8 ± 12.3 53.4 ± 17.6 54.1 ± 17.0 62.2 ± 14.2

Age range 25–76 25–76 25–76 25–76

Weight 62.54 ± 9.8 62.74 ± 11.53 62.30 ± 10.6 61.33 ± 10.6

Height 165.76 ± 6.7 162.13 ± 8.2 163.14 ± 7.7 164.09 ± 6.9

SBP 109.1 ± 7.3 122.9 ± 3.1 126.2 ± 6.6 153.8 ± 8.1

DBP 69.64 ± 5.6 72.4 ± 4.4 83.6 ± 4.2 88.4 ± 11.6
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Classification

We proposed empirical kernel mapping-based kernel extreme learning machine plus 
(EKM–KELM+) classifier for classification. The EKM–KELM+ algorithm has 5 parts: 
ROI features and brain network features, feature selection (FS), features after FS, EKM, 
and KELM+ classifiers. FS is used for feature reduction. EKM solves the problem of data 
linear indivisibility and improves the performance of classifier. KELM+ is for classifica-
tion. Ensemble learning is used to get the final classification label by voting on 5 classifi-
cation results. In the following parts, we will further elaborate the algorithm.

Empirical kernel mapping‑based KELM+
Figure 4 shows the flowchart of the proposed EKM–KELM+ algorithm with the follow-
ing steps (GMV as the main feature as an example):

1. Six kinds of features are extracted from the brain MR images after image preprocess-
ing, and feature selection is performed, respectively, to obtain optimal feature sub-
sets.

2. EKM is then performed on six optimal feature subsets to generate six new enhanced 
feature subsets.

3. The enhanced feature subsets are then sent to KELM+ classifier. During the train-
ing stage, GMV is selected as the main feature sending to 5 KELM+ classifiers 
(KELM +1–KELM+5). The other five features (CSFV, WMV, Thickness, Area and 
brain network feature) are used as privileged information sending to KELM+1–5, 
respectively, which provide additional information for the main feature GMV to train 
5 KELM+ classifiers.

4. The ensemble learning algorithm is finally applied to the 5 KELM+ classifiers for 
classification. In this work, the final classification label is decided by voting on 5 clas-
sification results.

Fig. 4 Flowchart of the proposed EKM–KELM+ algorithm. Feature selection (FS) includes t test and mutual 
information. In this figure, gray matter (GMV) acts as the main feature (red line), while cerebrospinal fluid 
(CSFV), white matter (WMV), cortical surface area (Area), and brain network features (BN, constructed by 
computing the Pearson correlation coefficient using mean and variance of cortical thickness between ROIs) 
are regard as privileged information (PI), which are help the main feature to train 5 KELM+ classifiers. Any 
type of feature can be treated as the main feature or PI
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5. During the testing stage, the GMV features extracted from structural MR images will 
be directly input to the 5 KELM+ classifiers (in the purple box), which then give the 
final classification result with the ensemble learning algorithm.

Empirical kernel mapping

The EKM algorithm maps original data to a given empirical feature space incrementally 
with explicit feature representation. Here is a brief introduction to EKM [42].

Let {xi}mi=1 be a d-dimensional training samples set. The input samples space is mapped 
to an r-dimensional empirical feature space is by a particular kernel function Φe . The 
kernel mapping of paired xi and xj is calculated as follows:

where ker(·, ·) is a particular kernel function, leading to a kernel matrix K = (Ki,j)m×m , 
and K  is a symmetrical positive semi-definite matrix with size of m×m . K  can be 
decomposed as

where Λ is a diagonal matrix containing r positive eigenvalues of K  in decreasing order, 
and P consists of the eigenvectors corresponding to the positive eigenvalues.

The EKM to an r-dimension Euclidean space Φe
r  is then can be given as

Thus a sample x can be mapped into empirical feature space incrementally with Φe
r (x).

KELM

The ELM performs a classification decision by nonlinearly expanding the original fea-
tures (enhancement nodes) through a single hidden layer [43].

In ELM, the output weight β can be calculated by ridge regression as

where T is a label matrix, C is the regularization parameter, which represents the trade-
off between the minimization of training errors and the maximization of the marginal 
distance and H is the enhanced matrix.

To overcome the problem of randomness in ELM, the kernel trick is then introduced 
into ELM as shown in Fig. 4. For KELM [23], we define the kernel matrices as

where K is a linear kernel function and K̃  represents a nonlinear kernel function.
The output of KELM is then given by

(1)Ki,j = Φe(xi)
T ·Φe(xj) = ker(xi, xj),

(2)Km×m = Pm×rΛr×rP
T
r×m,

(3)Φe
r (x) = Λ−1/ 2PT(k(x, x1), k(x, x2), . . . k(x, xm))

T.

(4)β=

(

HTH + I/C
)−1

HTT ,

(5)Ω̃ = HHT : Ω̃i,j = K̃ (xi, xj), i, j = 1, 2 . . . n,
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with the output weights calculated by the ridge regression as

KELM+
ELM+ successfully integrates the LUPI paradigm to ELM, which has simpler optimization 
constraint than the commonly used SVM+.

Define a set of training data {(xi,Pi, ti) |xi ∈ Rd1 ,Pi ∈ Rd2 , ti ∈ Rm, i = 1 . . . n} , where 
{Pi ∈ Rd2 , i = 1 . . . n} is a set of PI. In LUPI paradigm, ELM+ is formulated as

where ɛ is a regularization coefficient, h(xi) and h̃(Pi) are concatenated vector, and β̃ is 
an output weight vector in the privileged feature space.

The Lagrangian function is then constructed to solve the optimization problem in Eq. (8) 
by

where � = [�1, . . . , �n]
T are Lagrange multipliers.

After using the Karush–Kuhn–Tucker (KKT) condition to calculate the saddle points of 
the Lagrangian function, we have

By substituting Eqs. (10) and (11) into (12), we have

After combining Eqs. (10) and (13), the closed-form solution to the ELM+ is given 
by

(6)f (x) =













K (x, x1)
...

K (x, xn)












×
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1

C
+ Ω̃

�−1

T ,

(7)β=
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1
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T .
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Moreover, 1C  is added to Eq. (13) so as to avoid singularity and guarantee the stabil-
ity for ELM+, which leads to the following closed-form solution:

The output function of the ELM+ is defined as

Although ELM+ can implement the LUPI-based classification task, it also suffers 
from the same problem of randomness as ELM. Therefore, the kernel-based ELM+ 
algorithm is then proposed.

For the KELM+, we define the kernel matrices with same structure as Eqs. (4) and 
(5), the output weight vector is then given by

The output of KELM+ is finally calculated as

For multiclass cases, the predicted class label of a testing point is the index number 
of the output node, which has the highest output value for the given testing samples
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