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The Impact of Non-Isotropic Scattering and
Directional Antennas on MIMO Multicarrier

Mobile Communication Channels
Hamidreza Saligheh Rad and Saeed Gazor

Abstract—In outdoor environments, waves propagate non-
isotropically because of non-uniform distribution of scatter-
ers. In addition directional antennas, which are efficient for
communication applications, have considerable impact on the
response of the communication channel. The impact of non-
isotropic propagation and directional antennas is more significant
when the system employs multiple antennas. In this paper, we
propose a space-time-frequency cross-correlation function (CCF)
for multiple-input multiple-output multicarrier channels in a
two-dimensional (2D) random scattering medium. The expression
of the CCF turns out to be a multiplication of three CCFs. Two
of these terms characterize the impact of mobile station and base
station, respectively and are linear Bessel expansions, where the
coefficients are given by the linear convolution of the Fourier
series coefficients (FSC)s of the employed antenna patterns and
the FSCs of the probability density function describing 2D non-
isotropic environment. The third expression characterizes the
impact of the wireless channel. In the stationary case, we derive
the expression of the fading channel power spectrum (CPS) in
terms of the non-isotropic pdf and antenna patterns. Using the
expression of the CCF, we also calculate coherence-bandwidth
(CB)/coherence-time (CT) as a function of carrier-frequency/time
separations. Our numerical results show a good fit to the available
experimental results obtained for the CB/CT of realistic outdoor
channels.

Index Terms—MIMO wireless channel, space-time-frequency
cross-correlation function, random scattering media, non-
isotropic propagation channel, directional antennas, coherence-
time, coherence-bandwidth and power spectral density.

I. INTRODUCTION

W Ireless communication channels are significantly in-
fluenced by non-uniform distribution of scatterers in

the space as well as by the directional antenna propagation
patterns (APP), (i.e., by APP we mean the response of the
antenna to different directions in space). Accurate small-
scale fading models of these channels play a significant
role to achieve the full potential capacity of multiple-input
multiple-output (MIMO) multicarrier mobile communication
systems. The small-scale fading is considered due to the
small movements of the mobile station (MS) as well as
different characteristics of the multipath propagation medium
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which results in fluctuations in the received power level [1].
More precisely, this fading behavior highly depends on the
distribution of scatterers in the space, the antenna propagation
patterns (APP)s, and the direction and the speed of the MS.

A comprehensive approach to characterize MIMO chan-
nels is to analyze the statistical behavior of the space-time-
frequency (STF) channel transfer function (CTF) in terms of
different characteristics of the propagation environment and
the communication system [2]–[5]. In this approach, the CTF
is represented by a sum of propagation waveforms over a
number of paths. In each path, the signal reaches the receiver
with a response described by the probability density functions
(pdf)s of some random variables. These random variables are
phase, delay, direction-of-departure (DOD), and direction-of-
arrival (DOA). In order to describe a non-isotropic propagation
medium, most of existing MIMO channel models assume
either a function for the energy distribution of the propagating
waveforms versus directions or a pdf for the propagating
directions. Such an energy distribution is often called power
azimuth spectrum (PAS), while such a pdf for propagating
directions is known as azimuth angular spread (AAS). In the
literature, these distributions are justified using experimental
results [6]–[10]. Martin in [6] suggests a Laplacian (double-
sided exponential) pdf for the relative DOA of the first multi-
path component, i.e., for the line-of-sight (LOS), and a zero-
mean truncated Normal pdf for the relative DOA variables
associated with other paths. Pedersen, Mogensen, and Fleury
find that in typical urban environments, PAS is accurately
described by a Laplacian function, while a Gaussian function
matches the shape of the AAS [7]. Abdi, Barger, and Kaveh
propose the use of the versatile von-Mises angular distribution
for modeling the nonuniform AAS at the MS [8]. This distri-
bution accurately approximates relevant distributions such as
uniform, impulse, cardioid, Gaussian, and wrapped Gaussian.
Zekavat and Nassar in [9] introduce the secant-square PAS
model as a simple mathematical model and a better fit to real
measured data to the TSUNAMI II project [7]. Finally, Ao and
Ke in [10] show that the PAS in microcellular environments
can be approximated by a truncated Laplacian distribution,
based on the elliptical scattering model.

In [5], an STF model is proposed for a 2D isotropic propa-
gation environment and employing omnidirectional APPs. By
extending this model, we calculate the STF cross-correlation
function (CCF) between two sub-channels of a mobile mul-
ticarrier MIMO channel versus different antenna elements,
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time-indices, and carrier frequencies. We represent the non-
isotropic scatterers by the Fourier series expansion (FSE) of
the pdf of the propagating directions. We also consider the
effect of the directional antenna element patterns by the FSE
of the APPs. The expression of the CCF turns out to be a
composition of linear expansions of Bessel functions of the
first kind. The CCF shows different impacts of non-isotropic
wave propagation, directional antennas, and the direction of
MS motion on the shape of the channel power spectrum.
Since the existing experimental results reveal that the third
dimension of the space can have noticeable effects on the
CCF, the investigation on the impacts of the elevation angle is
still an active research subject in wireless channel modeling
[11]–[14].

The rest of this paper is organized as follows: Notations and
assumptions are introduced in Section II. In Section III, the
proposed CCF is derived and analyzed considering the impact
of non-uniform AASs and directional antennas. Coherence
time and coherence bandwidth are calculated in Section IV-C.
Conclusions are summarized in Section V.

II. MIMO NON-ISOTROPIC PROPAGATION CHANNEL

In this section, we introduce employed notations and as-
sumptions for a MIMO wireless channel in a 2-dimensional
(2D) non-isotropic random scattering medium along with
directional antenna arrays. Throughout this paper superscripts
B and M indicate variables at the BS and the MS sides,
respectively. Consider a moving MS with a constant speed
vector v( m

sec ) and a fixed BS. Antenna elements are located
on the 2D azimuthal plane at MS and BS sides around their
local coordinates, OB and OM . We assume a propagation
pattern for each antenna element denoted by GB

p (ΘB; ω)
and GM

m (ΘM ; ω) at frequency ω, for the pth antenna at
the BS and the mth antenna at the MS, respectively, where
ΘB ∆= ∠ΘB and ΘM ∆= ∠ΘM . The unity vectors ΘB or ΘM

represent a propagation direction (DOD or DOA) at BS or
MS, respectively. Antenna elements are addressed by position
vectors aB

p and aM
m versus local coordinates. We assume that

the distance between scatterers and antenna arrays is much
larger than the inter-element antenna distances, therefore,
propagation waveforms in the scattering environment are plane
waves and there is no inter-element scattering. We also assume
that the number of propagation paths is large enough such that
the channel is Rayleigh by virtue of the central limit theorem.
In other words, we assume multipath propagation with no line-
of-sight; however, the line-of-sight propagation path between
the transmitter and the receiver can be separately treated [4].

In the multipath propagation environment, the received
signal is composed of a linear combination of plane waves
where each received waveform (the ith received waveform)
is associated with a attenuation gain gp,m;i, a path phase
shift φi, a time-varying delay τp,m;i(t), and an antenna
gain composed of the pattern elements at both BS and MS
GB

p (ΘB
i ; ω)GM

m (ΘM
i ; ω), where ΘB

i and ΘM
i are propagation

directions associated with ith path. The APPs GB
p (ΘB; ω)

and GM
m (ΘM ; ω) are deterministic functions in terms of the

propagation direction and the frequency. The CTF between the
BS antenna located at aB

p and the MS antenna located at aM
m

is represented in terms of the carrier frequency as shown in
(1), where I is the number of dominant paths resulting from
scattering, the Doppler shift ω

c vT ΘM
i denotes the frequency

shift of the signal along ith path caused by the Doppler effect,
ω is the carrier frequency, and v and c are the MS velocity vec-
tor and the speed of light, respectively. The CTF, hpm(t, ω),
is the gain between baseband representation of the input and
the output of the channel assuming a narrowband transmitted
signal. A signal is defined narrowband in comparison with
the channel if the channel response, hpm(t, ω) is almost
constant within the frequency range ω ∈ [ω0 −W, ω0 + W ],
where [ω0 −W, ω0 + W ] is the signal bandwidth around the
carrier frequency ω0. From (1) we note that the CTF must
be a function of the statistics of all DODs and DOAs. The
propagation delay over ith path, τp,m;i(t)

∆= τp,m;i+ t
cv

T ΘM
i ,

is time-varying due to the mobility of the MS. We also make
the following assumptions:

A1) The pdf of the propagation directions, fB(ΘB) and
fM (ΘM ) over [−π, π), characterize the non-isotropic
propagation environment around the BS and the MS,
respectively. Since these pdfs are periodic with period
2π, we can represent them by their FSE pairs as follows:

FB
k ←→ fB(ΘB) and
FM

k ←→ fM (ΘM ), (2a)

Fk =
1
2π

∫ π

−π

f(Θ)e−jkΘdΘ and

f(Θ) =
+∞∑

k=−∞
FkejkΘ. (2b)

These pdfs are real and positive functions. If we assume
even functions for these angular distributions, then FM

k

and FB
k are also real and even functions versus k. Re-

ported measurement results in literature [6]–[10] suggest
the following two candidates for the pdf of the non-
isotropic AAS fΘ(Θ), (and their corresponding FSCs
Fk), namely truncated-Normal and truncated-Laplace
distributions (∀Θ ∈ [−π, π) and k ∈ Z):

Truncated
Laplace: fΘ(Θ) =

exp
(
− |Θ|

a

)
2a
(
1− e−

π
a

) ,
Fk =

e−
π
a (−1)k+1 + 1

2π
(
1− e−

π
a

)
(1 + k2a2)

, (3)

Truncated
Normal: fΘ(Θ) =

exp
(
− Θ2

2a2

)
erf
(

π√
2a

)√
2πa

,

Fk =
Re
{

erf
(

π+ja2k√
2a

)}
exp

(
−k2a2

2

)
erf
(

π√
2a

) , (4)

Aliased
-Normal: fΘ(Θ) =

1√
2πa

∞∑
k=−∞

e−
(Θ−2πk)2

2a2 ,

Fk =
1
2π

exp
(
−a2k2

2

)
. (5)

where Re(.) represents the real part of a complex vari-
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hpm(t, ω) =
I∑

i=1

GB
p (ΘB

i ; ω)GM
m (ΘM

i ; ω)gp,m;i exp
(
jφi − j

ω

c
vT ΘM

i t− jωτp,m;i

)
(1)
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Fig. 1. Fourier Series Coefficients for different AAS pdfs to approximate
truncated Laplace, truncated Normal and aliased Normal distributions in order
to have a good match to the real pdf for different propagation environments;
macrocellular (a = 0.15rad) and microcellular (a = 0.7rad) environments.

able and erf(z) ∆= 2√
π

∫ z

0
e−ξ2

dξ is the error function for
z ∈ C. We suggest to use an aliased form of the Normal
pdf in order to reduce the computational complexity
of the coefficients instead of the truncated Normal pdf.
The local distribution of scatters around the MS and BS
are different; the environment around the MS is usually
considered as a microcellular environment, while the en-
vironment around the BS is a macrocellular environment
[7]. However, the above pdfs characterize the statistics
of the angular dispersions at both BS and MS by using
different appropriate values for a (smaller value for the
BS side). Figure 1 compares the FSCs of these pdfs for
two different macrocellular and microcellular situations;
a = 0.15rad and a = 0.70rad, respectively. For practical
values of a (a < 1), the aliased Normal pdf is very close
to the truncated Normal pdf. We therefor propose to
use the aliased Normal pdf because the aliased Normal
pdf has simpler expression for FSCs. Let Nε denote
the required number of FSCs in order to approximate
the above pdfs with the requires accuracy ε, such that
∀k > Nε : |Fk| < ε. Comparing the distributions in
Figure 1, we see that the necessary number of FSCs

for the Laplace pdf is Nε = 1
a

√(
1+e− π

a

1+e− π
a

)
1

2πε − 1 ≈
1

a
√

2πε
larger than the necessary number of FSCs for the

Normal pdf Nε = 1
a

√−2 ln(2πε).
A2) The complex APPs, GB

p (ΘB; ω) and GM
m (ΘM ; ω), give

the response of the pattern elements in terms of the
propagation directions and the carrier frequency. These
pattern functions are all periodic functions of azimuth
angles, ΘB and ΘM , with the same period of 2π.
Therefore, we represent them by their FSEs as follows:

TABLE I
REQUIRED NUMBER OF FSCS, N95% , FOR REPRESENTING THE APP WITH

95% OF ITS ENERGY

N95%

Antenna Type h = c
4f

h = c
2f

h = 3c
4f

h = c
f

Half-wavelength dipole 3

Microstrip antenna 3 3 3 11

Vertical electric dipole 7 11 15 19

Finite length dipole 3 3 7 7

GB
p;k ←→ GB

p (ΘB; ω) and

GM
m;k ←→ GM

m (ΘM ; ω), (6a)

Gk =
1
2π

∫ π

−π

G(Θ; ω)e−jkΘdΘ and

G(Θ; ω) =
+∞∑

k=−∞
GkejkΘ. (6b)

The APPs of some commonly used antennas in wireless
applications are Θ ∈ [−π, π) [15] as shown in (7a)
through (7d), where h, h1 and h2 are proportional with
the size of the antenna and G0 is the positive real
constant antenna gain. The half-wavelength dipole and
microstrip antenna are often used for antenna arrays
[15]. All antennas are assumed to be on the azimuth
plane; the axis of dipole antennas are parallel with the
azimuth plane. The APPs of the employed antennas at
the BS side are normally different from those at the
MS side. By numerical simulations, we observe that for
these antennas, the value of |Gk| is only considerable
for a limited number of coefficients. We define N95%

as the required number of FSCs that constitute equal or
more than 95% of the energy of the APP. Table I, we
show N95% for h1 = h2

∆= h, and h ∈
{

c
4f , c

2f , 3c
4f , c

f

}
and the carrier frequency of f = ω

2π = 2GHz. We
usually need more coefficients when the size of the
antenna increases. One should note that the vertical-
electric dipole needs the most number of coefficients
to be accurately constructed.

A3) We decompose the ith path propagation delay, τp,m;i,
into three components: one major delay because of
the distance between BS and MS, and two relative
propagation delays with respect to local coordinates
across BS and MS antenna arrays, as follows:

τp,m;i = τi − (τB
p;i + τM

m;i), (8a)

τB
p;i

∆=
aB

p
T ΘB

i

c
, τM

m;i
∆=

aM
m

T ΘM
i

c
, (8b)

where (.)T represents the transpose operator, τi rep-
resents the delay between OB and OM , and τB

p;i and
τM
m;i represent relative propagation delays from antenna
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Half-wavelength dipole: G(Θ; ω) = G0j
cos
(

π
2 cosΘ

)
sin Θ

, (7a)

Microstrip antenna: G(Θ; ω) = −G0j
sin
(

ω
2ch1 sin Θ

)
sin
(

ω
2ch2 cosΘ

)
cosΘ

, (7b)

Vertical electric dipole: G(Θ; ω) = G0j sin Θ
[
2 cos

(ω

c
h cosΘ

)]
, (7c)

Finite length dipole: G(Θ; ω) = G0j
cos
(

ω
2ch cosΘ

)− cos
(

ω
2ch
)

sin Θ
. (7d)

elements, aB
p or aM

m , to corresponding coordinates, OB

or OM , respectively [5]. The time-delays τi are assumed
to be i.i.d. random variables which are exponentially
distributed. Exponential pdf is a common distribution in
outdoor propagation environments. The distribution of
the time-delay τi is fτi(x) = 1

σe−
x−τ+σ

σ , ∀x � τ − σ,
where τ = E[τi] is the mean value to specify the average
propagation distance between the MS and the BS, and
σ is the delay spread.

A4) Assuming |τi| � max
{|τB

p;i|, |τM
m;i|
}

, the path-gain as
a function of the time-delay will be:

gp,m;i � gi =

√
P

I
τi

− η
2 , (9)

where η is the pathloss exponent and P is a constant.
The appropriate value for the pathloss exponent is η = 2
for free space propagation, η = 4 for rural and η = 6
for crowded urban environments [5].

A5) As a consequence of the planar wave propagation, the
path phase shift φi accurately approximates φp,m;i. We
take into account the phase contribution of scatterers by
uncorrelated random phase changes φi ∼ U [−π, π). See
[16], [17] for more complicated and more realistic phase
difference models.

III. CROSS-CORRELATION FUNCTION (CCF) FOR

NON-ISOTROPIC PROPAGATION ENVIRONMENTS WITH

DIRECTIONAL ANTENNAS

The CCF between two sub-channels, hmp(t1, ω1) and
hnq(t2, ω2), is defined by,

Rpm,qn(t1, t2; ω1, ω2)
∆= E[hpm(t1, ω1) h∗

qn(t2, ω2)]. (10)

Since, this CCF is a function of sampling times (t1, t2),
carrier frequencies (ω1, ω2), and antenna elements (p, m; q, n),
we call it STF-CCF. By replacing (1) in (10), CCF is
written as shown in (11). We decompose the expression
of Rpm,qn(t1, t2; ω1, ω2) by regrouping dependent and inde-
pendent variables in (11), replacing gi from (9), and using
Assumptions A1-A4, as shown in (12). For i1 = i2, the first
expectation in (12) is given by [5, Appendix I]:

E
[
(τi1τi2)

−η
2 exp (j (ω2τi2 − ω1τi1))

]
= Φ(η)

τ (j(ω2 − ω1)) . (13)

where Φτ (s) ∆= e(µ−σ)s

1−σs is the moment generating function
(MGF) of τ . We also have,

E
[
ej(φi1−φi2 )

]
= δi1−i2 , (14)

where δk is the unit impulse. The last two expectations in (12)
are calculated in Appendix A. The calculation is proposed
for the case i1 = i2, as the case i1 
= i2 results in zero.
Hereby, we formulate the CCF as shown in (15a) through
(15d). Gk(ω) and Fk are the kth FSCs of the APP and the

AAS in the corresponding coordinates, respectively, Jk(z) ∆=
j−k

π

∫ π

0 ej(kξ+z cos ξ)dξ is the kth-order Bessel function of the

first kind, |.| denotes Euclidian norm and zn
∆= xn ⊗ yn =∑+∞

k=−∞ xkyn−k denotes the linear convolution of two given
discrete-time sequences xn and yn. In Assumption A3, we
consider an exponential pdf for the delay profile (DP). By
integrating the MGF, Φτ (s), ηth-times, we obtain the expres-
sion of Φ(η)

τ (s) as given in [5]. The vectors dB and dM are
the separation vectors. These separation vectors illustrate the
impact of the location of antennas, the time indices, the carrier
frequencies, and the mobile speed on the CCF at BS and MS,
respectively. The norm of these vectors (divided by c) are
the arguments of the Bessel functions. Therefore, these norms
represent a combination of the spatial, the temporal, and the
frequency separations between hmp(t1, ω1) and hnq(t2, ω2).

For an omnidirectional antenna we have Gk = δk. In this
case, the corresponding coefficients Gk vanishes from the
expression of the CCF. Similarly, for an isotropic scattering
around either the BS or the MS, we have Fk = 1

2π δk, i.e., the
corresponding coefficients Fk vanishes from the expression
of the CCF. In contrast to the isotropic scattering environ-
ment [5], the non-isotropic scattering and the propagation
patterns together create the higher order Bessel functions in
the expression of the CCF. From (15b), we will show that the
coefficients ejk∠dHk(ω) are given by the inner product of
W (d,Hk(ω)) with the Chebyshev polynomials in he Fourier
domain. In practice by employing only a limited number of
Bessel functions in (15a), we obtain an accurate approximation
for the CCF, since the APPs and the pdf of the propagation
directions are accurately approximated by a limited number
of FSCs.

From (15b), we observe that the norm of the separation
vectors |d| appear in the argument of Bessel functions, where
its phase modulates the coefficients, i.e., ejk∠dHk(ω). This
phase modulation plays a significant role on the behavior of
the CCF. Obviously, in an isotropic environment and using
omnidirectional antennas this phase modulation vanishes.

IV. NUMERICAL EVALUATION OF THE CCF

We perform different analysis on the derived CCF to see
the impact of non-isotropic propagation, directional antennas,
and the MS speed on the CCF.
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Rpm,qn(t1, t2; ω1, ω2) = E
[ I∑

i1,i2=1

GB
p (ΘB

i1 ; ω1)GM
m (ΘM

i1 ; ω1)gp,m;i1e
j(φi1−φi2)e−jω1τp,m;i1(t1)

×GB
q

∗
(ΘB

i2 ; ω2)GM
n

∗
(ΘM

i2 ; ω2)gq,n;i2e
jω2τq,n;i2 (t2)

]
(11)

Rpm,qn(t1, t2; ω1, ω2) =
P

I

I∑
i1,i2=1

{
E
[
(τi1τi2)

−η
2 ej(ω2τi2−ω1τi1)

]
E
[
ej(φi1−φi2 )

]

×E

[
GB

p (ΘB
i1 ; ω1)GB

q

∗
(ΘB

i2 ; ω2)e
j
(

ω1
c aB

p
T
ΘB

i1
−ω2

c aB
q

T
ΘB

i2

)]
(12)

×E

[
GM

m (ΘM
i1 ; ω1)GM

n

∗
(ΘM

i2 ; ω2)e
j
(

ω1
c (aM

m−vt1)T
ΘB

i1
−ω2

c (aM
n −vt2)T

ΘB
i2

)]}

Rmp,nq(t1, t2; ω1, ω2) = PΦ(η)
τ (j(ω2 − ω1))W

(
dB

p,q,GB
p,k(ω1)⊗ GB

q,−k

∗
(ω2)⊗FB

k

)
×

× W
(
dM

m,n,GM
m,k(ω1)⊗ GM

n,−k

∗
(ω2)⊗FM

k

)
(15a)

where,

W (d,Hk) ∆= 2π

+∞∑
k=−∞

jkejk∠dHk(ω)Jk(
|d|
c

), (15b)

dB
p,q

∆= ω1aB
p − ω2aB

q , dM
m,n

∆= (ω2t2 − ω1t1)v +
(
ω1aM

m − ω2aM
n

)
, (15c)

dB
p

∆= ω1aB
p , dB

q
∆= ω2aB

q , dM
m

∆= ω1(aM
m − t1v), dM

n
∆= ω2(aM

n − t2v), (15d)

A. Fourier Analysis of the CCF in Stationary Case

We analyze the CCF derived in (15a) in the frequency do-
main for the stationary case of ω1 = ω2 = ω, and m = n = 1.
In this case from ∠dM

1,1 = ∠v+∠(t2−t1), we get (16). Using
(16) and the Fourier transform of Jk(u)1, the Fourier transform

of this CCF versus the time-difference index ∆t
∆= t2 − t1

results in (17), where HB
k

∆= GB
p,k(ω)⊗GB

q,−k

∗(ω)⊗FB
k . Note

that Rp1,q1(Λ, ω) = 0, for all |Λ| � ω
c |v|. The Chebyshev

polynomials form a complete orthogonal set on the interval
−1 � u � 1, with respect to the weighting function 1√

1−u2
2.

Therefore, any bandlimited CCF (on the interval −ω
c |v| �

Λ � +ω
c |v|) can be expanded in terms of Chebyshev polyno-

mials as shown in the above expression. The coefficients of
this expansion are

{
ejk∠v

(
GM

1,k(ω)⊗ GM
1,−k

∗(ω)⊗FM
k

)}
.

These coefficients are also obtained by the inner product of

1We employ the Fourier transform of Jk(u) which is given by,

Jk(Λ)
∆
= F[Jk(u)]

=

∫ +∞

−∞
e−jΛξJk(ξ)dξ =

{
2(−j)kTk(Λ)√

1−Λ2
, if |Λ| < 1,

0, if |Λ| � 1,

where Tk(Λ)
∆
= cos

[
k cos−1(Λ)

]
is the kth-order Chebyshev polynomial

function of the first kind.
2It can be shown that,

∫ 1

−1

1√
1 − ξ2

Tk(ξ)Tl(ξ)dξ =

⎧⎨
⎩

0 , k �= l ,
π , k = l = 0 ,
π
2

, k = l = 1, 2, . . .
(18)

the CCF with Tk(Λ) (see (17)). In (19), RM (Λ), is the last
term in (17), and represents the impact of the non-isotropic
environment, the APP, and the direction of the MS speed,
The term, RM (Λ), is a power spectral density (PSD) that
represents the channel variations caused around or by the MS.
In Figures 2 this PSD is calculated and depicted for several
scenarios that are produced by combinations of:

1) propagation environment: macrocellular (a = 0.2rad),
or microcellular (a = 0.78rad),

2) distribution of propagation directions around the MS:
truncated Normal, truncated Laplace, or the uniform3

distributions; Fks are taken from Assumption A1,
3) antenna propagation pattern (commonly used in antenna

arrays): omnidirectional, half-wavelength dipole, or mi-
crostrip; Gks are taken from Assumption 2,

4) direction of the MS speed: the positive x-axis direction
or the positive y-axis direction.

Therefore, the maximum Doppler shift is ω|v|
c (i.e., RM (Λ) =

0 if |Λ| � ω|v|
c ) and the motion direction of the MS has a ma-

jor effect on the shape of CPS in a non-isotropic environment
with directional antenna. For instance in Figures 2a, 2c, and
2e, the CPS is greater at positive Λ than at negative Λ in
average. This is because of the interaction between the beam
of the antenna pattern, the direction of the MS movement, and
the pdf of the propagation directions. Note that in (19) if we
change v into−v, the CPS changes from RM (Λ) to RM (−Λ)

3The isotropic (uniform) scenario is traditionally used in some well-known
models such as the Jake’s model [1], [18].
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(a) Omnidirectional antenna; moving on the x-axis
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(b) Omnidirectional antenna; moving on the y-axis
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(c) Half-wavelength dipole, moving on the x-axis
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(d) Half-wavelength dipole, moving on the y-axis
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(e) Microstrip antenna, moving on the x-axis
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(f) Microstrip antenna, moving on the y-axis

Fig. 2. Comparison of Power Spectral Density (PSD): for stationary CCF (ω1 = ω2 = ω, one antenna at the MS with h = c
2f

), two non-isotropic
(Laplacian and Normally distributed) propagation environments and an isotropic environment (uniformly distributed), two different scenarios of macrocellular
(a = 0.20rad) and microcellular (a = 0.78rad) environments, and three antenna types: Omnidirectional, Half-wavelength dipole, and microstrip antennas.
(a), (c), and (e) when MS moves on the positive direction of x-axis, (b), (d), and (f) when MS moves on the positive direction of y-axis.
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RM (Λ) ∆=
+∞∑

k=−∞
ejk∠v

(
GM

1,k(ω)⊗ GM
1,−k

∗
(ω)⊗FM

k

) Tk

(
c Λ
|v|ω

)
√

1−
(

c Λ
|v|ω

)2
, |Λ| < ω

c
|v|. (19)

(note that ejk∠v is the only term that depends on the speed
direction). In Figures 2b, 2d, and 2f, all the CPS curves are
symmetrical around the axis Λ = 0. This is because the pdf
of the path directions and the APPs are symmetrical around
ΘM = 0, while the MS is moving in a direction perpendicular
to them. The CPS for the non-isotropic propagation is deviated
from the isotropic U-shaped function [18]. This deviation
depends on the antenna pattern (the size and type of employed
antenna), the type of the random propagation in the space, as
well as the MS speed vector.

If we assume that the speed direction ∠v in (19) is a random
variable independent of all other considered random variables,
we can simplify (19) by taking the expectation over ∠v. Thus
in this case, if Φ∠v(s) = E[es∠v] denotes the MGF of ∠v,
we get (20).

B. Fourier Analysis of the CCF in non-Stationary Case

The CCF in (15a) represents a non-stationary process in
general. The impact of several parameters are reflected via
the separation vectors d. The term ejk∠d in (15b) modulates
Hk. This phase modulation plays a significant role on the
behavior of the CCF. However, the interactions between var-
ious parameters is very complicated as is formulated by the
CCF in (15a). In order to gain better understanding of these
interactions, we can consider the general function W (d,Hk)
in (15b) that represents different terms of the derived CCF
(15a) when evaluated at different separation vectors d. If we
calculate the Fourier transform of W (d,Hk) with respect to
the norm of the separation vector |d| (e.g., either at the BS or
at the MS; dB

p,q or dM
m,n), we obtain similar results as in the

above. Therefore, we conclude that the separation effects of
the space, time, and carrier frequency are similarly and have
duality in their form.

C. Coherence Time and Coherence Bandwidth

Coherence time (CT), Tc, is the separation time over which
the fading channel appears to be correlated, while the coher-
ence bandwidth (CB), Bc, is the separation between frequen-
cies over which the signal envelope seems to be correlated.
Definitions for coherence may be based on the envelope corre-
lation function. A conventional definition for these coherence
functions for a SISO communication system is the value of
∆ (∆t = t2 − t1 � 0 or ∆ω = ω2 − ω1 � 0) which satisfies
the equation of the envelope correlation ρ(∆) = 0.5, where

ρ∆t,∆ω

∆= E[r(t1;ω1)r(t2;ω2)]−E2[r(t,ω)]
E[r2(t;ω)]−E2[r(t,ω)] , r(t, ω) ∆= |h(t, ω)|

and E[r(t, ω)] = 1
2

√
πR(t, t; ω, ω) [19], [20]. This definition

is equivalent to D∆t,∆ω
∆= |R(t1,t2;ω1,ω2)|2

|R(ti,ti;ωi,ωi)|2 = 0.5 (see
Appendix B).

Using numerical evaluations, we study the effects of differ-
ent parameters on the CB and CT under various circumstances.
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Fig. 3. Coherence bandwidth with respect to the delay spread σ; using
Exponential DP with mean, τ = 3.33µsec, t1 = t2 = 1sec, f1 = 1GHz,
|v| = 60Km/h, SISO communication system and for different propagation
environments with different pathloss exponents η; free space (typical urban),
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Fig. 4. Average coherence time with omnidirectional antenna, with respect to
the value of the MS speed |v|, considering Laplacian and Normally distributed
AAS, for two macrocellular (a = 0.20rad) and microcellular (a = 0.78rad)
non-isotropic wave propagation environments; using Exponential DP with
τ = 3.33µsec, σ = 1µsec, f1 = f2 = 2GHz, h = c

2f
, and for a SISO

communication system.

The CB is defined as ∆f (Λ∆t,0 = 0.5). Our extensive nu-
merical evaluations derived from this model show that in
practical situations the CB mostly depends on the delay spread
σ (t1 = t2 = 1sec), i.e., it is almost invariant with variations
of the parameters of the non-isotropic propagation media, the
employed antenna, or the MS speed. In other words, the CB
for a narrowband communication system is mostly determined
by the delay spread of the DP, σ. Therefore, consistent with
the behavior of wide-sense-stationary uncorrelated-scattering
(WSSUS) systems, the proposed CCF in a stationary scenario
suggests a WSSUS propagation system for outdoor environ-
ments.
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Fig. 5. Average coherence time with half-wavelength antenna, with respect to
the value of the MS speed |v|, considering Laplacian and Normally distributed
AAS, for two macrocellular (a = 0.20rad) and microcellular (a = 0.78rad)
non-isotropic wave propagation environments; using Exponential DP with
τ = 3.33µsec, σ = 1µsec, f1 = f2 = 2GHz, h = c
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communication system.

Figure 4 shows the CB with respect to σ for a typical urban
environment (η = 2), for crowded urban environment (η = 4),
and for rural environment (η = 6). These values for the CB are
close to the average of reported experimental measurements in
the literature [21], [22]. The reported values in the literature
are between 11.5MHz to 1.2MHz [22] for delay spread values
of 0.1µsec to 2µsec [21] in outdoor propagation environments.
It turns out that, the CB values reported in the literature under
various conditions are accurately predicted using the proposed
model. For example, when |R| = 0.5, Rappaport in [1]
reported an approximation formula for the CB as CB ≈ 1

5σ .
This formula results in CB = 0.2MHz for σ = 1µsec which
is very close to what is predicted by (21). In order to suggest
more accurate formulas for the CB in outdoor environments,
Figure 3 illustrates an almost linear relation between the CB
and the time-delay delay spread σ in a log-log scale, i.e., using
a simple curve fitting, we have:

CB ≈ k1σ
k2 ,

⎧⎨
⎩

k1 = 8.9450, k2 = −0.7432; η = 2,
k1 = 81.4346, k2 = −0.6088; η = 4,
k1 = 351.6372, k2 = −0.5212; η = 6.

(21)

The error in this approximation is less than ±0.75dB in |R|,
when the delay spread lies in [0.1-1.1)µsec (the reported range
of delay spread for outdoor environments).

The CT in the literature is reported to be mostly a function
of the value of the MS speed (or the maximum Doppler shift)
[1], [19]. Our numerical investigations also confirms such a
claim in some practical situations; however, we also observe
that in contrast of the CB, the CT is considerably influenced by
other parameters such as the MS speed direction. This result
is expected based on the Fourier analysis on the stationary
CCF, as the Doppler effect certainly appears as a function of
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Fig. 6. Average coherence time with microstrip antenna, with respect to the
value of the MS speed |v|, considering Laplacian and Normally distributed
AAS, for two macrocellular (a = 0.20rad) and microcellular (a = 0.78rad)
non-isotropic wave propagation environments; using Exponential DP with
τ = 3.33µsec, σ = 1µsec, f1 = f2 = 2GHz, h = c

2f
, and for a SISO

communication system.

different parameters of the non-isotropic propagation media,
parameters of the employed antenna at the MS side, and the
MS speed. The CT is defines as ∆t (Λ∆t,0 = 0.5). In order
to evaluate the behavior of the CT, we numerically calculated
the CT for different values of the MS speed direction ∠v.
Then calculated the average CT over these directions, i.e.,
CT

∆= 1
2π

∫ π

−π
CT(∠v)d(∠v). This is equivalent to assume

that the MS may move in any direction on the azimuthal
plane with the same probability. Figures 4, 5, and 6 show
the averaged CT with respect the MS speed, |v| in a log-
log scale for three different antennas employed at the MS
side; omnidirectional antenna, half-wavelength dipole, and
microstrip antenna, respectively. These graphs suggest an
almost linear relation between the value of the MS speed and
the average CT in a log-log scale for Laplacian distribution.
On the other hand for a Normally distributed environment,
the average CT is almost constant for all the values of the
MS speed. Non-omnidirectional antennas such as the half-
wavelength antenna or the microstrip antenna introduce more
fluctuations in the graph of the average CT versus |v|. This
is because a directional antenna introduces spatial selectivity
which interacts with the direction of the MS speed and results
in the fluctuations on the Doppler frequency shift and hence
on the average CT graph. We note that the CT is invariant
with the path-loss exponent and the delay profile as these
parameters only appears in the frequency correlation term,
Φ(η)

τ (j(ω2 − ω1)), in (15a) [5]. The average CT results are
consistent with the available approximation formulas for the
average CT in the literature. For example, when |R| = 0.5,
Rappaport in [1] gives an approximation formula for the
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CT as CT≈ 9c
8|v|ω , where c is the speed of light and ω is

the carrier frequency. Given |v| = 60Km/h and ω = 2πf
with f = 2GHz, this formula results in CT= 16.11msec
which is very close to what is obtained from our model in a
macrocellular normal distribution employing omnidirectional
antenna. In order to suggest more accurate formulas for the
average CT in outdoor environments, we use the same curve-
fitting technique being employed for the CB as in [5]. This
way, we find the following approximation between the CT and
|v| for the Laplacian distributed environment:

Omnidirectional antenna:

CT ≈ k1|v|k2 ,

{
k1 = 6.5839, k2 = −0.9219; a = 0.20,
k1 = 7.8541, k2 = −1.0641; a = 0.78,

(22a)

Half-wavelength dipole:

CT ≈ k1|v|k2 ,

{
k1 = 1.0750, k2 = −1.2223; a = 0.20,
k1 = 2.1396, k2 = −1.3979; a = 0.78.

(22b)

V. CONCLUSIONS

We have calculated the CCF for a MIMO multicarrier
channel in a 2D outdoor environment. The contribution in this
2D-CCF model is that this model:
A1) considers the impact of non-isotropic wave propagation

along with directional antenna element patterns,
A2) accurately takes into account the noticeable effect of the

direction and the value of the MS speed,
A3) gives an accurate expression for the CCF allowing us to

analyze the CCF in the frequency domain,
A4) and gives mathematical expressions to evaluate wire-

less channels, e.g., developing simulators, calculating
approximate expressions for the CB and the CT.

Using a non-geometry approach following [5], the non-
isotropic environment and the antenna pasterns are described
by their Fourier series expansions. The proposed CCF turns
out to be multiplication of three correlation function. The first
function is characterized by the parameters of the antennas
at the BS and the scatterers around the BS. Similarly, the
second function is characterized around the MS. The last
correlation function describes the impact of the delay profile
and the pathloss component (see [5] for more details about
this term). The first two CCFs (in each station) appear as a
linear series expansion of averaged Bessel functions of the
first kind. The coefficients of this expansion are given by the
linear convolution of the FSCs of the corresponding element
patterns with the FSCs of the non-isotropic distributions of the
angles of scatterers. In practice, this expansion has a limited
number of components since the coefficients rapidly converge
to zero. The Fourier analysis of the CCF in a stationary case
reveals the fact that the channel power spectrum deviates
from the U-shaped function (i.e., Jake’s/Clark model) to a
great extent. This deviation depends on the pdf of the AAS,
the employed antennas and the direction of the MS speed.
Using the orthogonality between Chebycshev polynomials, we
observe that the series expansion coefficients of the Fourier
transform of each term of the CCF are also given by the inner
product of a Chebycshev polynomial and the Fourier transform
of the corresponding term. The expressions for the coherence

bandwidth (CB) and the coherence time (CT) are derived and
numerically evaluated using the proposed CCF.

Our investigations show that the CB is almost-only a
function of the delay spread σ, while the CT is not only
a function of the MS speed (both its value and direction),
but also is a function of FSCs representing the non-isotropic
propagation medium and the employed antenna. Using these
expressions for the CB and CT, we suggest approximation
formulas for the CB and CT in different situations.

APPENDIX A
CALCULATION OF THE CROSS-CORRELATION FUNCTION

This appendix provides details on the calculation of last
two expectations in (12), as shown in the equations at the
top of the next page. Assuming that i1 = i2 = i and
using the Fourier series expansions for both APPs and AASs,
we are able to calculate these expectations either at the
BS or at the MS. As an example, we evaluate this ex-
pression at the MS with antennas m and n in (23), where
dM

m,n
∆= (ω2t2 − ω1t1)v +

(
ω1aM

m − ω2aM
n

)
, ΘM

i
∆= ∠ΘM

i

and GM
m,k(ω), GM

n,k(ω), and FM
k are the FSCs of the APPs

and the AAS in the corresponding coordinates, respectively.
Jk(u) ∆= j−k

π

∫ π

0
eju cos ξ cos(kξ)dξ is the kth-order Bessel

function of the first kind, and ⊗ and |.| denote linear con-
volution and Euclidian norm, respectively. The terms includ-
ing some time-dependencies appear in the definition of the
operand of Bessel functions. This is, of course, in the condition
when the direction and the amplitude of the speed of the MS
v, are constants. The same calculation procedure is valid for
the BS side.

One should note that GM
m,k(ω) or GM

n,k(ω) absolutely de-
pend on the characteristics of the APPs, GM

m (ΘM ; ω) or
GM

n (ΘM ; ω). The APP is usually a well-behaved function,
except for the cases when the antenna has a very selective
response to a certain direction in the space [15]. For more
information on the APPs, see Section II and [15].

APPENDIX B
THE RELATIONSHIP BETWEEN THE CCF AND COHERENCE

TIME/COHERENCE BANDWIDTH

For the envelope process r(t; ω) in the presence of enough
number of multipath waves (where I is large enough), and
for i = 1 or i = 2, we have (24) [19, Pages 47-51] [23],
where E(.) is the complete Elliptic integral of the second kind

and D∆t,∆ω
∆= |R(t1,t2;ω1,ω2)|2

|R(ti,ti;ωi,ωi)|2 . We approximate this equation
using the expansion of the hypergeometric function [19, Page
51], and obtain:

E [r(t1; ω1)r(t2; ω2)] ≈ π

4
|R(ti, ti; ωi, ωi)|

(
1 +

D∆t,∆ω

4

)
.

(25)
From the above, we get ρ∆t,∆ω = D∆t,∆ω = 0.5. Therefore,
using the expression of the CCFs in this dissertations, the
CB and the CT are given by the solution of the following
equations, respectively, for ∆ω and ∆t:

D0,∆ω = 0.5, (26a)

D∆t,0 = 0.5. (26b)
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=
∫ π

−π

+∞∑
k=−∞

(
GM

m,k(ω1)⊗ GM
n,k

∗
(ω2)⊗FM

k

)
ejkΘM

i +j
|dM

m,n| cos(ΘM
i −∠dM

m,n)
c dΘM

i

= 2π

+∞∑
k=−∞

jkejk∠dM
m,n

(
GM

m,k(ω1)⊗ GM
n,−k

∗
(ω2)⊗FM

k

)
Jk

(|dM
m,n|/c

)
,

E [r(t1; ω1)r(t2; ω2)] =
1
2
|R(ti, ti; ωi, ωi)|

(
1 +

√
D∆t,∆ω

)
E
(

2 4
√

D∆t,∆ω

1 +
√

D∆t,∆ω

)
, (24)

From (26) we observe that the CB and the CT are functions of
various parameters such as the APP of the employed antenna
at the MS, AAS of the propagation environment on the MS
side, and the speed of the MS.

REFERENCES

[1] T. S. Rappaport, Wireless Communications–Principles and Practice.
Prentice Hall PTR, 1996.

[2] D. S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading
correlation and its effect on the capacity of multielement antenna
systems,” IEEE Trans. Commun., vol. 48, pp. 502–513, Mar. 2000.

[3] D. Gesbert, H. Bolcskei, D. Gore, and A. Paulraj, “Outdoor mimo
wireless channels: models and performance prediction,” IEEE Trans.
Commun., vol. 50, pp. 1926–1934, Dec. 2002.

[4] A. Abdi and M. Kaveh, “A space–time correlation model for multiele-
ment antenna systems in mobile fading channels,” IEEE J. Select. Areas
Commun., vol. 20, pp. 550–560, Apr. 2002.

[5] S. Gazor and H. S. Rad, “Space-time-frequency characterization of
MIMO wireless channels,” IEEE Trans. Wireless Commun., to appear.

[6] U. Martin, “Spatio-temporal radio channel characteristics in urban
macrocells,” IEE Proc. - Radar, Sonar and Navigation, vol. 45, pp. 42–
49, Feb. 1998.

[7] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, “A stochastic model
of the temporal and azimuthal dispersion seen at the base station in
outdoor propagation environments,” IEEE Trans. Veh. Technol., vol. 49,
pp. 437–447, Mar. 2000.

[8] A. Abdi, J. A. Barger, and M. Kaveh, “A parametric model for the
distribution of the angle of arrival and the associated correlation function
and power spectrum at the mobile station,” IEEE Trans. Veh. Technol.,
vol. 51, pp. 425–434, May 2002.

[9] S. A. Zekavat and C. R. Nassar, “Power-azimuth-spectrum modeling
for antenna array systems: a geometric-based approach,” IEEE Trans.
Antennas Propag., vol. 51, pp. 3292–3294, Dec. 2003.

[10] A. Tang and K. Gong, “Study on power azimuth spectrum of wireless
channel in microcell environments,” in Proc. IEEE Personal, Indoor and
Mobile Radio Communications, (PIMRC’03), Sept. 2003.

[11] Y. Z. Mohasseb and M. P. Fitz, “A 3d spatio-temporal simulation
model for wireless channels,” in Proc. IEEE International Conference
on Communications, vol. 6, pp. 1711–1717, June 2001.

[12] T. D. Abhayapala, T. S. Pollock, and R. A. Kennedy, “Characterization
of 3d spatial wireless channels,” in Proc. 58th IEEE Conference on
Vehicular Technology, vol. 1, Orlando, Florida, pp. 123–127, Fall 2003.

[13] Q. Yao and M. Patzold, “Spatial-temporal characteristics of a half-
spheroid model and its corresponding simulation model,” in Proc. 59th
IEEE Conference on Vehicular Technology, Milan, Italy, Spring 2004.

[14] H. S. Rad and S. Gazor, “Space-time-frequency characterization of
3d non-isotropic mimo multicarrier propagation channels employing
directional antennas,” IEEE Trans. Wireless Commun., accepted for
publication.

[15] C. A. Balanis, Antenna Theory: Analysis and Design. John Wiley &
Sons, 2nd ed., 1996.

[16] H. Hashemi, “The indoor radio propagation channel,” Proc. IEEE,
vol. 81, no. 7, pp. 943–968, 1993.

[17] H. Nikookar and H. Hashemi, “Phase modeling of indoor radio propa-
gation channels,” IEEE Trans. Veh. Technol., vol. 49, pp. 594–606, Mar.
2000.

[18] R. H. Clarke, “A statistical theory of mobile radio reception,” Bell Syst.
Techn. J., no. 47, pp. 957–1000, 1968.

[19] W. C. Jakes, Microware Mobile Communications. New York: Wiley,
1974.

[20] G. D. Durgin and T. S. Rappaport, “Theory of multipath shape factors for
small-scale fading wireless channels,” IEEE Trans. Antennas Propag.,
vol. 48, pp. 682–693, May 2000.

[21] A. Algans, K. Pedersen, and P. Mogensen, “Experimental analysis of the
joint statistical properties of azimuth spread, delay spread, and shadow
fading,” IEEE J. Select. Areas Commun., vol. 20, pp. 523–531, Apr.
2002.

[22] Z. Xiongwen, J. Kivinen, P. Vainikainen, and K. Skog, “Propagation
characteristics for wideband outdoor mobile communications at 5.3
ghz,” IEEE J. Select. Areas Commun., vol. 20, pp. 507–514, Apr. 2002.

[23] H. Rad and S. Gazor, “A cross-correlation model for non-isotropic
scattering with non-omnidirectional antennas in mimo propagation chan-
nels,” in Proc. 2005 IEEE 6th Workshop on Signal Processing Advances
in Wireless Communications, pp. 251–255, 2005.



652 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 4, APRIL 2008

Hamidreza Saligheh Rad is born in 1975, Tehran,
Iran. He received his B.S. degree from the Elec-
trical Engineering department at Sharif University
of Technology (SUT), Tehran, Iran in May 1997;
his M.S. degree from the department of Electrical
and Computer Engineering at Isfahan University of
Technology (IUT), Isfahan, Iran in August 2000. In
December 2005, he received Ph.D. in communica-
tion engineering from the department of Electrical
and Computer Engineering at Queens University
and under the supervision of Prof. Saeed Gazor.

In January 2006, Hamidreza joined Harvard BroadBand Communications
Laboratory (HBBCL) at Harvard School of Engineering and Applied Sciences
as a visiting research scholar to be working with Prof. Vahid Tarokh.

Hamidreza has worked in different research areas with his Ph.D. thesis
on “Modeling and Evaluation of Wireless Communication Channels,” At
Harvard, Hamidreza has worked on a number of research problems including
“design of frequency-selective pulses for cardiovascular magnetic resonance
imaging (MRI),” “advanced communication and networking techniques for
satellite communications,” and “methods for non-linear three-dimensional
inverse imaging.”

Saeed Gazor (S’94-M’95-SM’98) received the
B.Sc. degree in electronics and the M.Sc. degree
in communication systems from Isfahan University
of Technology, Isfahan, Iran, in 1987 and 1989,
respectively, both with the highest standing, and
the Ph.D. degree (with highest honors) in signal
and image processing from Departement Signal,
Telecom Paris, Ecole Nationale Suprieure des Tl-
communications/ENST, Paris, France, in 1994.

From 1995 to 1998, he was with the Department
of Electrical and Computer Engineering, Isfahan

University of Technology. From January 1999 to July 1999, he was with the
Department of Electrical and Computer Engineering, University of Toronto,
Toronto, ON, Canada. Since 1999, he has been on the Faculty at Queen’s
University at Kingston, ON, Canada, where he currently holds the position
of Associate Professor in the Department of Electrical and Computer Engi-
neering. He is also cross-appointed to the Department of Mathematics and
Statistics at Queen’s University. His main research interests are array signal
processing, statistical and adaptive signal processing, speech processing,
MIMO communication systems, networking, analog adaptive circuits, channel
modeling, and information theory.

Dr. Gazor received a number of awards, including a Provincial Premier’s
Research Excellence Award, a Canadian Foundation of Innovation Award, and
an Ontario Innovation Trust Award.


