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Abstract—This paper studies the effect of rotation of a Mobile
Station (MS) on the Cross-Correlation Function (CCF) derived
for a microcellular isotropic wave propagation environment with
enough number of scatterers. The statistical model characterizes
the propagation media when the MS rotates with a constant
angular velocity around an axis perpendicular to the azimuthal
plane, and moves with a constant velocity on the azimuthal plane
in an arbitrary direction. The moving MS with a constant speed
produces the conventional linear Doppler while the rotating
MS introduces angular Doppler. The research shows that the
rotation of the MS results in a non-stationary random process
as the CCF. The only exception in which the result follows a
stationary function is a narrow-band communication system,
when either the MS angular velocity or the MS speed is zero.

Keywords: Wireless channel modeling, Cross-Correlation
model, MS rotation, linear Doppler, angular Doppler.

I. INTRODUCTION
Fast growing demand for high data-rate wireless communi-

cation using wireless systems, the limited available bandwidth,
as well as the widespread usage of these systems in different
locations, motivates the investigation of more effective, more
flexible, and more realistic wireless systems. In order to
propose an efficient design of such a system, communication
engineers seek for any reliable resource of information about
the propagation environment. A wireless channel may be de-
pendent on several parameters including: frequency; time; re-
ceiver/transmitter translation; receiver orientation; Transmitter
Orientation; multi-element receiver, and multi-element trans-
mitter [1]. Transmitter or receiver orientation/rotation which
turns out to be important in certain situations, is an almost
neglected issue in the context of wireless channel modeling.
This variation is because of movements of the mobile user in
the propagation environment [2].
The Channel Impulse Response (CIR) varies with rotation

of Mobile Station (MS) or Base Station (BS). A moving
MS with rotational motion affects the channel model in two
different ways: linear Doppler caused by its straight motion,
and angular Doppler caused by its rotation around an axis.
There are not many fundamental works in the literature to
investigate the effect of this rotation on the channel model.
The work proposed by Pakravan, Kavehrad, and Hashemi [3],
[4] suggests an experimental framework to study the effect
of rotation in wireless channels. These researchers report on a
set of measurements to investigate the effect of rotation on the

parameters of indoor infrared channels. More specifically, they
create a large data base of channel frequency response to study
the effect of receiver rotation on the channel path-loss and its
delay spread. They show that the delay spread of the channel
and its path-loss are linearly correlated on the log scale when
the station is rotated. They elaborate the measurement set up
and procedures in [3], and present the results in [4].
In this paper and under some simplifying assumptions, we

study the effect of rotation of the MS on the Cross-Correlation
Function (CCF) of a wireless radio channel. We consider a mi-
crocellular environment with enough number of scatterers on
both sides of MS and BS [5], [6]. Wave propagation is assumed
to be planar in the two-dimensional (2D) azimuthal plane.
Many related physical parameters, such as phase change in the
received waveform; time-delay; channel-gain as a function of
the time-delay; Direction of Arrival (DOA); and Direction of
Departure (DOD) are considered. The BS is fixed in the plane,
while the MS moves with a constant speed on the azimuth
plane and rotates with a constant angular velocity around
the azimuthal axis. The proposed model describes statistical
characteristics of a 2D Rayleigh channel with a rotating MS
as a function of space, time, and frequency. As this research
talks about the conditional CCF in condition of a certain and
simple movement/rotation, its result is useful when we have
some statistical information on how a MS1 moves/rotates on
the plane [2]. In other words, the result of this research is
easily used as a basic element to characterize the CCF of a
wireless channel considering the MS movements.
The rest of this paper is organized as follows: The notations

and the assumptions are presented in Section II considering the
MS rotation (see [5], [6] for more details). The new Space-
Time-Frequency CCF considering the MS rotation is derived
in Section III. Some discussions and simulation results on
the behavior of the model are proposed in Section IV. The
behavior of the correlation model in the presence of MS
rotation is described in the results section. Finally conclusions
are drawn in Section V.

II. PHYSICAL ASSUMPTIONS
Figure 1 shows BS-MS antennas in a 2D propagation

environment. The superscript B indicates variables at the BS

1A MS is usually a human as a user of the cellular service. Therefore, we
need statistical models on the free human movements [2].
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Fig. 1. General Propagation Scenario from BS to MS: BS antenna and MS
antenna in their local coordinates. Time delay of ith propagating waveform
to the MS has three components: two relative propagation delays, and one
major distance delay.

and the superscript M is used for variables on the MS side.
The subscript i indicates variables related to the ith dominant
path. The following notations are used in this paper:
OB BS coordinate,
OM MS coordinate,
h(t, ω) CIR between BS and MS;
b Position of BS antenna relative to OB;
m Position of MS antenna relative to OM ;
ΘB
i The unity vector pointing to DOD from BS;
ΘM
i The unity vector pointing to DOA from MS;

v MS speed vector;
ω Carrier frequency;
c Wave propagation velocity;
I Number of total dominant paths;
τB,M ;i Delay between BS and MS antenna elements;
gB,M ;i Gain between BS and MS antenna elements,

approximated by gi;
φi Phase contribution along the ith dominant path;
θ Softness factor;
i Shifted frequency by the Doppler phenomenon;

κ Correlation coefficient between sub-channels,
βi Fast fading factor;
η Pathloss exponent;
σ Variance of the time-delay τi;
τ Mean of the time-delay τi; and,
ν MS angular velocity.

We assume that the position of the MS antenna element
does not change with time relative to the MS coordinate,
while the coordinate itself moves in a constant linear speed
of v and rotates in a constant angular velocity of ν. In
Figure 1 the position of antennas at MS and BS are arbitrarily
selected with respect to their local coordinates. The antennas
are assumed to be omnidirectional. Each antenna receives the
signal through the media via a large number of propagating
paths with uniform DODs and DOAs, since the MS and
the BS are assumed to have almost the same height [1].
Overall, the propagation media is considered to be a rich
scattering microcellular environment [8], [9]. Notations ΘBi
and ΘMi represent DOD and DOA unity vectors of the ith

path at BS and MS respectively (see Figure 1). Vector v
represents the MS mobility on a horizontal plane. Figure 2
shows the schematic of the rotation of the MS around an
axis perpendicular to the azimuthal plane. The rotation is
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Fig. 2. MS in Presence of Rotation Around the Azimuthal Axis:
Two-dimensional wave propagation scenario with a rotating MS around the
azimuthal axis. The MS rotates with a fixed angular velocity, ν.

considered to be in a constant angular velocity.
The model used in this paper is based on some assumptions

of physical parameters which are explained here [5], [6]:
A1) The azimuthal angles are all uniformly distribution over

[−π, π), i.e, ∠ΘB
i and ∠ΘM

i ∼ U [−π, π). In other
words, the environment is an isotropic scattering media.

A2) The ith propagation delay, τB,M;i, is decomposed as:

τB,M;i = τi − (τBi + τMi ), (1a)

τBi
∆
=

BTΘBi
c

, (1b)

τMi
∆
=

MTΘMi
c

, (1c)

where τi represents delay between OB and OM , and τBi
and τMi represent relative delays from antenna elements,
b orm. We assume that τi’s are independent identically
distributed (i.i.d.) with pdf τi ∼ 1

σ e
− τ−τ+σ

σ , ∀τ > τ−σ,
where τ is the average time-delay related to the propa-
gation distance and σ is the variance of delay. Moment
Generating Function (MGF) of τi is Φτ (s) =

e(τ−σ)s
1−σs .

A3) Figure 2 shows the schematic of a rotating MS in the
horizontal 2D plane. This rotation introduces another
source of channel variation in Space Time (ST) chan-
nel modeling [1]. In a rotational MS scenario, vector
indicating the location of MS antenna, m(t), is time-
varying. This position vector has two parts including a
fixed component and a time-varying component

m(t) =m0e
jνt, (2)

where m0 is the initial position vector. From (1) and
(2), and considering the fact that we are characterizing
a microcellular isotropic wave propagation environment,
it turns out the impact of this rotation mainly appears
on the delay profile at the MS side in the form of a
time-varying propagation delay. In fact, because in an
isotropic environment the rotation of the MS (BS) makes
no change in the angular spread seen by the station, the
only effect will be on the delay of the wave traveling
toward (from) the station. This time-varying propagation
delay for the ith path in the MS side is written as:

τMi (t) =
mT (t)ΘM

i

c
. (3)

A4) Path gain, gB,M;i, and propagation delay, τB,M;i, are
random parameters that are both functions of path

Globecom 2004 3059 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society



length; therefore, they are dependent. When |τi| À
max

©|τBp;i|, |τMm;i|ª, the following relation has been used
to describe this interaction [8]:

gB,M ;i ' gi = βi

µ
τ

τi

¶η
2 p

P0. (4)

where βi is the fast fading factor [8], η is called pathloss
exponent, and P0 is a constant. The fast fading factor
is assumed to be a stationary time-invariant random
process, independent of the time-delay, τp,m;i. We also
assume that E[β2i ] = 1 and E[βi1βi2 ] = κ, where 0 6
κ < 1 is the correlation coefficient [8]. Depending on
the propagation media, the pathloss exponent is usually
measured between 2 and 6 [8].

A5) The phase contribution of scatterers are considered by a
random phase change, φi, as: pφφφ(φ) ∼ U [0, 2θ); 0 6
θ < π, and θ is the softness factor. The random phase
change, φi, is independent from channel gain, time-
delay, and fast fading factor, βi.

III. MODEL DESCRIPTION

A solution basis for Maxwell’s equations is to break down
the received waveform into a linear combination of an appro-
priate set of elementary functions [1], e.g., the set of plane
waves [1], [9]. Planar waves emitted from the antenna b
travel over several propagation paths with different lengths.
We assume that the waves are scattered in the propagation
media and reach the MS m via a number of dominant paths
from different directions. The following expression describes
the CIR of such a propagation scenario [5], [6],

h(t, ω) =
1√
I

IX
i=1

gB,M;i exp (jφi + j it− jωτB,M ;i) , (5)

where I is the number of dominant paths resulting from
scattering, and gB,M ;i/

√
I is the real gain, a function of the

time-delay and the fast fading factor [8]. The frequency of
ith waveform is denoted by i

∆
= ω

c v
TΘM

i , where ω is the
carrier frequency and vTΘM

i /c is the Doppler spread factor.
We derive a closed-form expression for the ST cross-

correlation function between CIRs of two arbitrary communi-
cation links, h(t1, ω1) and h(t2, ω2). This correlation function
is denoted by [5], [6],

R(t1, t2;ω1, ω2)
∆
= E[h(t1, ω1) h

∗(t2, ω2)]. (6)

Replacing (1), (3), (4), and (5) in (6), considering the char-
acteristics of a planar wave [1], [5], using Assumptions A1-
A5 established in this section, and doing some manipulations,
R(t1, t2;ω1, ω2) is decomposed as follows:

P0τ
η

I

IX
i1,i2=1

n
E[βi1βi2 ]E

h
(τi1τi2)

−η
2 ej(ω2τi2−ω1τi1)

i
(7)

× E [exp(j(φi1 − φi2))]
o
J0(|dB|)J0(|dM |),

where,

dB
∆
=

ω1 − ω2
c

b,

dM
∆
=

ω1t1 − ω2t2
c

v +
³ω1
c
ejνt1 − ω2

c
ejνt2

´
m0,

J0(z)
∆
= 1

2π

R 2π
0

ejz cosudu, and the amplitude of a vector
is denoted by |.|. Parameters dB and dM represent shifted
distance vectors at BS and MS, respectively. Greater dB
and dM often result in less ST correlation because of the
form of the Bessel function. These parameters contain spa-
tial, temporal, and frequency separation between h(t1, ω1)
and h(t2, ω2). As it is seen, effect of rotation appears as
a sinusoidal time-varying component in the operand of the
Bessel function. Also by looking at the obtained result, even
in a narrow-band communication, i.e., ω1 = ω2, the proposed
CCF depends on different time indices, t1 and t2. This means
that the suggested model in presence of MS rotation offers
a non-stationary random process to characterize the wireless
channel. More specifically, the proposed model introduces a
stationary random process just in the case that in a fixed carrier
frequencies either the MS angular velocity, ν, or the MS speed,
v, is zero. It means that the model presents a stationary random
process in a narrowband communication system when the MS
movement is either purely linear or purely angular.
Considering expectations in (7), using Assumption 4, MGF

of the i.i.d. time-delays2, MGF of i.i.d. phase changes3, and
doing some manipulations, we get R(t1, t2;ω1, ω2) as [5], [6]

P0τ
η J0(|dB |)J0(|dM |) Φ(η)τ (j(ω2 − ω1)) + (8)

+ P0τ
η

µ
sin θ

θ

¶2
J0(|dB|)J0(|dM |)×

×(I − 1)κ
³
Φ
( η2 )
τ (−jω1)Φ(

η
2 )

τ (jω2)
´
,

where Φ(η)τ (s) is obtained by (η)th-times integration of the
time-delay MGF,Φτ (s). We assume that η2 is a positive integer
number 4. The effect of slow fading is taken into account in
the log-normal component by Assumption A4 [9], while βi is
assumed to be time-invariant [8], [9].

IV. NUMERICAL RESULTS AND DISCUSSIONS
In all our numerical results, the unit for the antenna spacing

is half of the carrier wavelength, λ
2

∆
= cπ

ω . In what follows,

2Using Assumption A2, we have

E
h
(τi1τi2 )

−η
2 exp (j (ω2τi2 − ω1τi1 ))

i
=

=

(
Φ
(η/2)
τ (jω2)Φ

(η/2)
τ (−jω1) , i1 6= i2,

Φ
(η)
τ (j(ω2 − ω1)) , i1 = i2.

where Φτ (s) =
e(τ−σ)s
1−σs is the MGF of the time-delay, τi.

3Using Assumption A5, we have

E
h
ej(φi1−φi2 )

i
=

½
1 i1=i2,

Φφi1
(j)Φφi2

(−j) i1 6=i2,

where Φφi(s) =
esθ−e−sθ

2sθ
is the MGF of the phase change, φi.

4The appropriate values for the pathloss is η = 2 for free propagation
environments, η = 4 for rural environments, and η = 6 for crowded urban
environments [8], [9].
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Fig. 3. Effect of Carrier Frequency: CCF with respect to frequency offsets
∆f

∆
= f2−f1, for different time differences∆t

∆
= t2−t1, t1 = 0, the mobile

speed, v = 40[1 0]TKm/h, the mobile angular velocity, ν = π
4
rad/sec,

m = [1 j]T cm, b = [0 0]T cm: a) f1 = 1GHz, b) f1 = 3GHz.
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(a) v = 30[1 0]TKm/h
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(b) v = 60[1 0]TKm/h

Fig. 4. Effect of MS Speed: CCF with respect to frequency offsets ∆f
∆
=

f2−f1, f1 = 1GHz, for different time differences∆t
∆
= t2−t1, t1 = 1msec,

the mobile angular velocity, ν = π
4
rad/sec, m = [1 j]T cm, b = [0 0]T cm:

a) v = 30[1 0]TKm/h, b) v = 60[1 0]TKm/h.

we use the Exponential distribution for the time-delay with
a constant mean, τ = 2µsec, and variance, σ = 100psec
[8]. This profile is selected for a free space propagation
environment when η = 2.
In Figure 3 normalized CCF, R(t1,t2;ω1,ω2)

R(t1,t1;ω1,ω1)
, is plotted as

a function of the carrier frequency offsets ∆f ∆
= f2 − f1,

and time differences ∆t ∆= t2 − t1, where ωi = 2πfi and
f1 is constant either at 1GHz or at 3GHz. This figure shows
that the correlation decreases as the difference of either carrier
frequencies ∆f or time indices ∆t increases. This decreasing
property results from the Bessel functions and the other term
caused by delay profile MGF.
Figure 4 shows joint Spatial-Frequency selectivity (i.e., the

CCF is depicted as a function of ∆t = t2 − t1 and ∆f =
f2 − f1) when the MS has different speeds v. In this figure
t1 = 1msec and f1 = 1GHz are fixed. Comparing Figures 4a
and 4b, we observe that the mobile speed affects the CCF to a
great extent; the CCF decreases significantly when the mobile
speed increases. Figure 5 also shows the Spatial-Frequency
selectivity comparing different mobile angular velocity ν.
Comparing Figures 5a and 5b, we observe that the CCF not
only decreases by the increase of the mobile angular velocity,
but also its shape changes. In other words, depending on ν,
the oscillations of the Bessel function gets effect of the ejνt
term inside the operand of the Bessel function.
Non-stationary behavior of this model is an important

attribute which is shown in our numerical results. Figure 6
shows this characteristic of the CCF in presence of the MS
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Fig. 5. Effect of MS Angular Velocity: CCF with respect to frequency
offsets ∆f

∆
= f2 − f1, f1 = 1GHz, for different time differences ∆t

∆
=

t2 − t1, t1 = 2msec, the mobile speed, v = 40Km/h, m = [1 j]T cm,
b = [0 0]T cm: a) ν = π

4
rad/sec, b) ν = π

8
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Fig. 6. Non-Stationary Behavior: CCF with respect to frequency offsets
∆f

∆
= f2 − f1, f1 = 1GHz, for different time differences ∆t

∆
= t2 − t1,

the mobile speed, v = 40Km/h, the mobile angular velocity ν = π
4
rad/sec,

m = [1 j]T cm, b = [0 0]T cm: a) t1 = 1msec, b) t1 = 5msec.

rotation. In this figure, the Temporal-Frequency selectivity of
the model is examined under different conditions when the
first time index t1 is changing. Comparing Figures 6a and 6b,
we observe that the shape of the CCF changes when we
change the first time index t1. This implies that the model does
not depend on the time difference t1 − t2; therefore, it does
not introduce a stationary random process. This discussion
is valid for a wideband communication system when carrier
frequencies f1 and f2 are different and far apart from each
other. In the particular case when we consider a narrowband
communication system, i.e., f1 = f2, the CCF may still
represent a non-stationary random process. In other words,
the model in general is not a function of the time difference
t1 − t2 (see equation (7)). When the angular velocity of the
MS is negligible in comparison to the mobile speed or vice
versa (i.e., when the MS has either angular or linear movement
in the azimuthal plane), this model proposes a stationary
random process for narrowband communications. This feature
is important when we use this model for simulation purposes.
We are interested in studying the effect of the new source

of channel variations, the MS rotation, on the CCF. Figure 7
compares the CCF in two different scenarios: with and without
rotation of MS. This comparison is accomplished with respect
to different physical parameters which have key functions in
the evaluation process. In order to see the effect of rotation in
a better way, we choose a small value for the mobile speed.
The figure shows that rotation has effect on both the amplitude
and the period of oscillations of the correlation function.
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Here, we raise an important discussion on the diameter
and physical dimensions of the antenna element at MS, as
well as the propagation pattern of this antenna. Looking at
dM = ω1t1−ω2t2

c v +
¡
ω1
c e

jνt1 − ω2
c e

jνt2
¢
m0 in (7), this

equation shows that the rotation has no effect when the MS
antenna is located at the origin of the MS coordinate. This
is true when the antenna has no diameter (m0 = 0), the
antenna has no special pattern, and the DOA is uniform. If
any of these conditions is changed, then the rotation has a
considerable effect on the CCF. In this paper, as it is men-
tioned before, we have considered uniform isotropic DOAs
for incoming propagation paths to the MS and omnidirectional
antenna elements with no special patterns [10]. In any case,
if we break any of these assumptions, e.g., a non-isotropic
propagation environment for incoming waves (non-uniform
DOAs) [7], or directive antennas at MS which has special
pattern in special directions [10], the effect of rotation is more
considerable. In this situation, the mathematical model for the
correlation function will be different from our equations. We
are extensively dealing with some important cases considering
different propagation conditions as well as different types of
antennas in some of our future publications.
At the end of this section, we address different effects

of rotation on the CCF to give a better picture on the
meaning of the angular Doppler. As it is mentioned before,
the rotation of the mobile station can cause different effects:
1. It changes the propagation delay of the incoming path
into the antenna element, 2. It changes the angular spread of
the incoming paths, seen by the MS. This scenario happens
only the propagation environment is non-isotropic scattering
[7]. The first effect causes some changes in the frequency
(and the amplitude) of the received waveform, as it is seen
in Figure 7. In harmony to its linear counterpart, this phe-
nomenon is referred as the angular Doppler in this paper.
The second effect which is not less important, is the change
of the effective angular spread of the propagating waves. In
a non-isotropic environment, the rotation produces an extra
exponential term in the CCF, which is multiplied into the
existing components [7]. In reality, the rotation of a user is not

in the form of a pure rotation; therefore, statistical information
on the rotational/orienatational movements of the MS/user is
necessary to provide the precise form of the CCF [2].

V. CONCLUSIONS
We propose a very simple, closed-form and tractable expres-

sion for the CCF of an isotropic wireless propagation media
with a rotating MS. More specifically, we model characteristics
of a microcellular rich scattering environment when the MS
moves with a constant velocity on the azimuthal plane in an
arbitrary direction, and rotates with a constant angular velocity
around an axis perpendicular to the azimuthal plane. The
proposed model suggests a correlation expression as a function
of time, space, and frequency. The comparison of a rotational
MS scenario with a non-rotating MS scenario shows that the
rotation has a considerable effect on both the amplitude and
the period of oscillations of the CCF. In any case if we break
the uniform DOA assumption for the incoming propagation
waves, or the omnidirectional assumption for the MS antenna
element, the effect of rotation is more considerable. Moreover,
the mathematical model to represent this correlation function
will be different. In reality, the rotation of a user is not in
the form of a pure rotation; therefore, statistical information
on the rotational/orienatational movements of the MS/user is
necessary to provide the precise form of the CCF. Overall, this
model introduces a non-stationary random process to charac-
terize the propagation environment considering MS rotation,
with exception of a narrowband communication, when either
the MS angular velocity or the MS speed is zero.
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