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Purpose: Compressed sensing (CS) provides a promising framework for MR image reconstruction from
highly undersampled data, thus reducing data acquisition time. In this context, sparsity-promoting
regularization techniques exploit the prior knowledge that MR images are sparse or compressible in a
given transform domain. In this work, a new regularization technique was introduced by iterative
linearization of the non-convex smoothly clipped absolute deviation (SCAD) norm with the aim of
reducing the sampling rate even lower than it is required by the conventional l1 norm while approaching
an l0 norm.
Materials and Methods: The CS-MR image reconstruction was formulated as an equality-constrained
optimization problem using a variable splitting technique and solved using an augmented Lagrangian (AL)

method developed to accelerate the optimization of constrained problems. The performance of the
resulting SCAD-based algorithm was evaluated for discrete gradients and wavelet sparsifying transforms
and compared with its l1-based counterpart using phantom and clinical studies. The k-spaces of the
datasets were retrospectively undersampled using different sampling trajectories. In the AL framework, the
CS-MRI problem was decomposed into two simpler sub-problems, wherein the linearization of the SCAD
norm resulted in an adaptively weighted soft thresholding rule with a sparsity enhancing effect.
Results: It was demonstrated that the proposed regularization technique adaptively assigns lower weights
on the thresholding of gradient fields and wavelet coefficients, and as such, is more efficient in reducing
aliasing artifacts arising from k-space undersampling, when compared to its l1-based counterpart.
Conclusion: The SCAD regularization improves the performance of l1-based regularization technique,
especially at reduced sampling rates, and thus might be a good candidate for some applications in CS-MRI.

Published by Elsevier Inc.
1. Introduction

Magnetic resonance imaging (MRI) is one of the leading cross-
sectional imaging modalities in clinical practice offering a great
flexibility in representing the anato-functional characteristics of
organs and soft tissues. However, MRI often suffers from long data
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acquisition time. Fast data acquisition is of particular importance for
capturing temporal changes over whole organs in a short time.
Beside ultra-fast imaging sequences [1], emerging trends focus on
partial Fourier [2] and parallel MRI (pMRI) [3,4], which are based on
the undersampling of k-space and estimation of missing data using
the redundant information available in the acquired data or prior
knowledge about the underlying image.

One of the issues of the data acquisition techniques employing k-
space undersampling is reduced signal to noise ratio (SNR), since
SNR is directly proportional to the number of phase-encoding steps
or the amount of acquired data. Furthermore, at high undersampling
rates or acceleration factors, the reconstructed images can exhibit
residual aliasing artifacts that further degrade image quality. The
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reduced SNR and residual artifacts, in fact, arise from the ill-
conditioning of the inverse problems encountered in this context [5].
Regularization and explicit incorporation of prior knowledge during
reconstruction of MR images are efficient ways to improve the
conditioning of the problem and thus to penalize unsatisfactory and
noisy solutions. Several regularization schemes have been assessed
in this context. Tikhonov regularization suppresses noise and
artifacts by favoring smooth image solutions [6–8].The truncated
singular value decomposition attempts to reduce noise by truncating
small singular values on the assumption that noise amplification is
associated with small singular values of solution [6,9]. Both
regularizations are based on l2 norm minimization and tend to blur
the details and edges in the estimated image [6,10]. Recent
developments in compressed sensing have introduced sparsity
regularization techniques, which have garnered significant attention
inMR reconstruction from highly undersampled k-spaces. In fact, CS-
MRI reduces noise and aliasing artifacts by exploiting the prior
knowledge that MR images are sparse or weakly sparse (compress-
ible) in spatial and/or temporal domains [11,12], in a given
transform domain such as wavelets, Fourier, discrete gradients
[11,13] or in learned dictionaries [14,15]. By establishing a direct link
between sampling and sparsity, CS theory provides an alternative
sampling criterion to conventional Shannon–Nyquist theory [16,17].
According to this theory, it is possible to accurately recover the
underlying signal or solution from the data acquired at sampling
rates far below the Nyquist limit as long as i) it is sparse or has a
sparse representation in a given transform domain and ii) the
sampling pattern is random or such that the aliasing artifacts are
incoherent (noisy-like) in that domain [17,18].

Sparsity regularization aims at finding a solution that has the
sparsest representation in a given sparse transform domain. In this
regard, the l0 norm is an ideal regularizer (or prior), which counts the
number of non-zero elements of the solution [19]. However, this
non-convex prior results in an intractable and non-deterministic
polynomial-time hard (NP-hard) optimization problem. For this
reason, the l1 norm has been widely used as a convex surrogate to
the l0 norm and has gained popularity in conjunction with wavelet
[20,21] and discrete gradient transforms [22]. The latter is known as
total variation (TV) regularization [23–26] and has been shown to
outperform l2-based regularizations in CS-(p)MRI [27,28]. The l1-
based regularizations; however, show a lower limit in the required
sampling rate and hence in the maximum achievable acceleration
rate [29]. In addition, the l1 norm is known to be biased due to over-
penalizing large sparse representation coefficients [30]. To further
reduce the sampling rate and approach l0 norm minimization,
Candes et al. [30] proposed a reweighted l1 norm minimization in
which the sparsity induced by the l1 norm is enhanced by the
weighting factors that are derived from the current estimate of the
underlying solution. This approach has been successfully applied in
CS-(p)MRI [31–33]. Furthermore, non-convex priors homotopically
approximating the l0 norm have also been studied showing the
improved performance of the resulting regularization techniques in
the recovery of strictly sparse signals [19,34,35]. However, MR
images are usually compressible rather than sparse, hence it is
desirable to exploit the sparsity-promoting properties of both l1 and
l0 norm minimizations [36]. To improve the properties of l1 and
pseudo l0 norms in terms of unbiasedness, continuity and sparsity,
Fan and Li [37] proposed a non-convex prior called smoothly clipped
absolute deviation (SCAD) norm in the context of statistical variable
selection. This norm has been designed to not excessively penalize
large valued coefficients as in the l1 norm and at the same time
approaching an l0 norm. Teixeira et al. [38] have previously studied
the SCAD regularization for sparse signal recovery using a second-
order cone optimization method. In this work, we employed, for the
first time, the SCAD regularization with discrete gradients and
wavelet transforms in the context of CS-MRI and solved the resulting
problem using variable splitting and augmented Lagrangian (AL)
methods. In the AL framework, the optimization problem is reduced
to simpler sub-problems, leading to an improved convergence rate in
comparison with state-of-the-art and general purpose optimization
algorithms [39,40]. In this framework, the linearization of the SCAD
norm resulted in a weighted soft thresholding rule that exploits the
redundant information in image space to adaptively threshold the
gradient fields and wavelet coefficients and to effectively reduce
aliasing artifacts. In this study, we compared the performance of the
proposed SCAD-based regularization with the conventional l1-based
approach using simulation and clinical studies, where k-spaces were
retrospectively undersampled using different sampling patterns to
demonstrate the potential application of the proposedmethod in CS-
MR image reconstruction.

2. Materials and methods

2.1. Theory

For a single-coil CS-MRI, we formulate the following CS
acquisition model:

y ¼ ΦFxþ n ½1�

where γ∈CM is the undersampled k-space of the underlying MR
image, x∈RN, contaminated with additive noise n∈CM.F∈CN × N is a
Fourier basis through which x is being sensed and Φ∈ℝM × N is a
sampling matrix that compresses data to M b N samples. The matrix
A = ΦF is often referred to as sensing or Fourier encoding matrix.
The direct reconstruction of x from y (by zero-filling themissing data
and then taking its inverse Fourier transform) results in aliasing
artifacts, which is attributed to the ill-conditioning of matrix A. As a
result, regularization is required to regulate the solution space
according to a prior knowledge. The solution can therefore be
obtained by the following optimization problem:

x̂ ¼ argimx
1
2
‖ΦFx−y‖2 þ R xð Þ ½2�

where the first term enforces data consistency and the second one,
known as regularizer, enforces data regularity. In the CS-MRI context,
sparse l1-based regularizers have been widely used because the l1
norm is a convex and sparsity promoting norm, thereby the resulting
problem is amenable to optimization using convex programming.
These regularizers are of the form R(x) = λ‖Ψx‖1 = λ ∑ i = 1

N |[Ψx]i|,
where λ > 0 is a regularization parameter controlling the balance
between regularization and data-consistency and Ψ is a sparsifying
transform such as discrete wavelet, Fourier or gradient transform.
The CS approach makes it possible to accurately reconstruct the
image solution of problem (1), provided that i) the underlying image
has a sparse representation in the domain of the transform Ψ, i.e.
most of the decomposition coefficients are zero, while few of them
have a largemagnitude, ii) the sensingmatrixA should be sufficiently
incoherentwith the sparse transformΨ, thereby the aliasing artifacts
arising from k-space undersamplingwould be incoherent (noise like)
in the domain of Ψ [11,18].

2.2. Proposed method

The sparsity or compressibility of an image solution induced by l1
based regularizers can be increased by introducing a non-convex
potential function, ψλ, as follows:

R xð Þ ¼ ∑
i¼1

ψλ j Ψx½ �ij
� � ½3�
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where ψλ assigns a higher penalty on the coefficients of small
magnitude, therefore, they are being shrunk towards zero. In this
study, the non-convex SCAD potential function is applied for CS-MRI
regularization. The SCAD function, which has been widely and
successfully used for linear regression with variable selection [37], is
defined as:

ψλ jtjð Þ ¼
λjtj
−jtj2 þ 2aλjtj−λ2
� �

=2 a−1ð Þ;
1þ að Þλ2

=2

jtj≤λ
λ〈jtj≤aλ

jtj〉aλ

8><
>: ½4�

where a > 2. This potential function corresponds to a quadratic
spline with knots at λ and aλ. Based on simulations and some
Bayesian statistical arguments, Fan and Li [37] suggested a = 3.7.

In this study, 3D discrete gradient and 2D wavelet transforms
were employed as sparsifying transforms. For discrete gradient, we
define Ψ = [Ψh,Ψv,Ψa] ∈ ℝ3N × N, which is composed of directional
first-order finite difference matrices (horizontal, vertical and
axial) with periodic boundary conditions. By convention, we
define the magnitude of the gradient at voxel i by Ψ;Ψx½ �i ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ψhx
h i2

i
þ Ψvx
� �2

i þ Ψax
� �2

i

r
; Ψx½ �i∈R3. The summation over the

magnitude of the gradient at all voxels in Eq. (3) defines an isotropic
TV regularizer, which is known to be edge-preserving in image
processing and sparsity-promoting in compressed sensing. However,
this is known to sometimes result in stair-casing artifacts, which are
artificial flat regions in the image domain. For wavelet transforms,
we make use of Daubechies 7/9 biorthogonal (D7/9) wavelets, with
four resolution levels in a normalized tight (Parseval) frame of
translation-invariant wavelets, implemented by undecimated dis-
cretewavelet transforms (UDWT) and a lifting scheme. In UDWT, the
decimation (downsampling) is eliminated in favor of invariance to
the shifts of an input image, thus avoiding the star-like artifacts
usually induced by the standard decimated wavelet transform. Note
that in the case of a tight frame, ΨℝD × N, which is called
decomposition or forward wavelet transform, satisfies ΨT Ψ=I,
whereΨT is reconstruction or inverse wavelet transform and I is the
identity matrix.

To solve the problem defined in Eq. (2) using SCAD-based
regularizer, we follow the augmented Lagrangian (AL) method,
which has been originally developed for constrained optimization
problems [41]. The AL method, also known as the method of
multipliers [42], allows for the optimization of non-continuously
differentiable regularizers through a variable splitting technique, in
which auxiliary constraint variables are defined and the original
optimization problem is decomposed to simpler sub-problems [39].
Hence, we define the auxiliary variable θ=Ψx and cast the problem
(2), with the regularizer defined by Eqs. (3) and (4), into the
following constrained problem:

min
x;θ Γ x; θð Þ≜1

2
‖ΦFx−y‖2 þ

XN
i¼1

λ jθijð Þ
( )

; subject to θ ¼ Ψx: ½5�

The augmented Lagrangian for this problem is defined as:

L x; θ;γð Þ ¼ Γ x; θð Þ−γT θ−Ψxð Þ þ ρ
2
jjθ−Ψxjj2: ½6�

where γ∈ ℝ3N and ρ > 0 are respectively the Lagrange multipliers
and the penalty parameter associated with the equality constraint
θ = Ψx. The AL method aims at finding a saddle point (x⁎, θ⁎)
minimizing L(x,θ,γ). The classical approach to solve Eq. (6)
alternates between a joint-minimization and an update step
as follows:

xkþ1
; θkþ1

� �
¼ argminx;θL x; θ;γk

� �
: ½7�

γkþ1 ¼ γk−ρ θkþ1−Ψxkþ1
� �

: ½8�

As joint-minimization in Eq. (7) is not trivial, an alternating
minimization with respect to a given variable while fixing the other
one can be followed. Using this approach, referred to as alternating
direction method of multipliers (ADMM) [43], the optimization
algorithm of Eq. (7) reads:

xkþ1 ¼ argminx
1
2
‖ΦFx−y‖

2

−γT
k θk−Ψx
� �

þ ρ
2
jjθk−Ψxjj2

	 

½9�

θkþ1 ¼ argminθ

XN
i¼1

ψλ jθijð Þ−γT
k x−Ψkþ1
� �

þ ρ
2
jjθ−Ψxkþ1jj2

( )
: ½10�

Recently, Ramani et al. [40] studied the ADMM method for pMRI
and demonstrated its outperformance over nonlinear conjugate
gradient algorithms. In this work, we followed this method and
derived solutions for the involved sub-problems as follows.

2.2.1. Minimization with respect to x
Theminimization in Eq. (9) is achieved by taking the derivative of

the objective of the problemwith respect to x and equating it to zero,
thereby one arrives at the following normal equations:

FHΦTΦF þ ρΨTΨ
� �

xkþ1 ¼ FHΦTy þΨT ρθk−γk
� �

: ½11�

where (⋅)H denotes the Hermitian transpose and ΦTΦ∈ℝN × N is a
diagonal matrix with zeros and ones on the diagonal entries. To solve
this problem, one needs to invert the matrix G ≜ F HΦTΦF + ρΨTΨ.

In the case of discrete gradients with periodic boundary
conditions, the matrix Ψ∈ℝ3N × N as a block-circulant structure
and its directional derivatives can be achieved by circular convolu-
tions with two-element kernels. Therefore, Ψ can be efficiently
diagonalized using 3D discrete Fourier transform (DFT) [44], i.e.
Ψ = F HΛF , where Λ is a diagonal complex matrix containing the
DFT coefficients of the convolution kernels of Ψ. Hence, one obtains
ΨTΨ = F H|Λ|2F , where |Λ|2 ∈ ℝN × N is the modulus of Λ, also the
eigenvalue matrix of ΨTΨ. With this diagonalization, the solution of
problem (9) is given by:

xkþ1 ¼ FH ΦTΦþ ρjΛ2j
� �−1F FHΦTy þΨΤ ρθk−γk

� �� �
: ½12�

It should be noted that in the case of non-Cartesian MR data, the
Fourier encoding matrix ΦF is not diagonalizable using discrete
Fourier transform. However, the solution can be obtained by
regridding of data to Cartesian k-space or the use of iterative
techniques such as the conjugate gradient algorithm for estimating
the inverse of G. Recently, Akcakaya et al. [45] proposed another
approach to approximate the matrix ΦTΦ, which is not diagonal
in the case of non-Cartesian data acquisition, by a diagonal
matrix which gives an approximate closed-form solution to this
sub-problem.

In the case of wavelet frames, the inversion of matrix G can
be obtained by Sherman–Morrison–Woodbury matrix inversion
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formula and exploiting the fact that ΨTΨ = ΦΦT = I,
as follows:

G−1 ¼ 1
ρ

I−FHΦT ΦΦT þ ρI
� �−1

ΦF
� �

¼ 1
ρ

I− 1
1þ ρ

FHΦTΦ
!
:

 
½13�

By doing some algebra and knowing thatFF H = I, one can show
that the solution of Eq. (11) for wavelet transforms reads:

xkþ1 ¼ ΨT θk−1
ρ
γk

� �
þ 1
1þ ρ

FHΦT y−ΦFΨT θk−1
ρ
γk

!!
:

  
½14�

2.2.2. Minimization with respect to θ
The SCAD potential function is non-convex; thereby the problem

(10) might have multiple local minima. The minimization of non-
convex problems often depends on the initial estimate and the
choice of the optimization algorithm. Global search techniques, such
as simulated annealing, can guarantee convergence to a global
minimizer but they are impractical for routine use in image
reconstruction. Hence, one can utilize an optimization transfer
technique to iteratively surrogate the non-convex function by a
convex function, which is amenable to optimization. Fan and Li [37]
proposed a local quadratic approximation to the SCAD function near
the point θik as follows:

Q jθij; jθki j
� �

¼ ψλ jθki j
� �

þ 1
2

ψ
0

λ jθki j
� �

jθki j jθij2−jθki j2
� � ½15�

where the first derivative of the SCAD function is given by:

ψ
0

λ jθijð Þ ¼ λ
max 0; aλ−jθijð Þ= a−1ð Þ

jθij≤λ
jθij〉λ

	
½16�

The quadratic surrogate in Eq. (15) is, however, undefined at
points θik = 0. The denominator can be conditioned to |θik| + E ,
where E is a predefined perturbation parameter [46]. Since an E

erroneous potentially degrades the sparsity of the solution as well
as the convergence rate of the optimization algorithm, Zou and Li
[47] proposed the linear local approximation of the SCAD function
Fig. 1. The non-convex SCAD potential function (ψ) together with its convex quadratic
(Q) and linear (L) surrogates (θk = 2, a = 3.7, λ = 1).
near the point θik. As a result, the following convex surrogate
is obtained:

L
�
jθij; jθki j

�
¼ ψλ

�
jθki j
�
þ ψ

0

λ

�
jθki j
��

jθij−jθki j
�
: ½17�

Fig. 1 compares the SCAD function with its quadratic and linear
convex surrogates. Note that the linear surrogate is a non-smooth
function and is similar to a scaled or weighted l1-norm.

Given the superiority of linearization of SCAD, we adopted this
convex surrogate and derived a closed-form solution to the problem
(10). By dropping the terms independent of θi in (17), completing
the square in (10) and defining the intermediate variable
θ̃ ¼ Ψxkþ1 þ γk=ρ, we can rewrite the problem (10) as follows:

θkþ1 ¼ argminθ

XN
i¼1

ψ
0

λ jθki j
� �

jθij þ
ρ
2
jjθ̃−θ‖2: ½18�

As the terms in the above optimization problem are separable, we
obtain the solution by the following component-wise soft-thresh-
olding estimator according to theorem 1 in [48]:

θkþ1
i ¼ 0 j θ̃ ij≤wk

i =ρ θ̃i−wk
i sign θ̃i

� �
=ρ; j θ̃ij〉wk

i =ρ:
n

½19�

Where wi
k = ψλ

' (|θik|) are iteratively derived weighting factors that
promote or suppress the thresholding of the decomposition co-
efficients and in the case of discrete gradients, by convention,

j θ̃ ij ¼ j θ̃h
i j2 þ j θ̃v

i j2 þ j θ̃a
i j2

� �
1=2

�
, where |c|2 = c*c is themodulus of

the complex variable c. Note that in the case of discrete gradients,wi
k,

is isotropically used for the gradient fields at a voxel in three
directions, that is, the weighting factors are concatenated to obtain
wk∈ℝ3N and then are fed into Eq. (19).

As a result of linearization of the SCAD function, the regularizer
R(θ) = ∑ i = 1

N ψλ
' (|θik|)|θi|for θi = [Ψx]i in fact behaves as an itera-

tively weighted l1-based regularizer with improved performance
(see Results section). Note that by setting the weights wi

k = λ, the
proposed regularization reduces to the conventional l1-based
regularization. To this end, Algorithm 1 summarizes the proposed
SCAD-ADMMalgorithm for CS-MRI. A global convergence is declared
when the relative difference between xk + 1 and xk falls below a
tolerance (η).
Algorithm 1
SCAD-ADMM.

Choose ρ, λ, η and initialize θ0, γ0 = 0.
Pre-compute |Λ|2 if Ψ is discrete gradients.
While (‖xk + 1 − xk‖/‖xk‖)〉η do
1. Compute xk + 1 according to Eq. (12) if Ψ is discrete gradients or
Eq. (14) if Ψ is
a wavelet transform.

2. Define the intermediate variable θ̃ ¼ Ψxkþ1 þ γk=ρ.
3. Compute the weights wk = ψλ

' (|θk|) using Eq. (16).
4. Compute θk + 1 by weighted soft-thresholding of θ̃ using
Eq. (19) and the weights wk.

5. Update Lagrange multipliers according to Eq. (8).
3. Experiments and evaluations

Several simulations and retrospective k-space undersampling in
clinical datasets were performed to evaluate the performance of the
proposed SCAD regularization with l1-based regularization. The
variable density random sampling and Cartesian approximations of
the radial and spiral Fourier trajectories were used for retrospective
undersampling of the (fully sampled) Cartesian k-spaces of
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phantoms and clinical datasets. To demonstrate the performance of
SCAD regularization for highly undersampled MR reconstruction, we
first performed a set of simulated noisy data generated from the
anthropomorphic XCAT phantom. In this experiment, the k-space of
a 512 × 512 slice of the XCAT phantom was sampled by 8 equally
spaced radial trajectories as well as a single-shot variable-density
spiral trajectory, respectively corresponding to 98.33% and 98.30%
undersampling, with 20 dB complex noise added to k-spaces. For the
evaluation of the proposed SCAD-ADMM algorithm with 3D discrete
gradients, an MR angiography (MRA) dataset in a patient with
arterial bolus injection was obtained from Ref. [49]. The dataset has
been synthesized from projection data collected for 3 frames per
second for a total of 10 s (31 collected frames) and linearly
interpolated into 200 temporal frames. In this study, 30 time frames
of this dataset (with resolution of 256 × 256) were chosen and their
3D k-space was retrospectively undersampled using a stack of 2D
single-shot variable-density spiral trajectories, yielding 78.7% under-
sampling. The performance of the algorithm was further evaluated
with 2D translation-invariant wavelets using two brain datasets. A
transverse slice of a 3D brain T1-weighted MRI dataset (of the size
181 × 217 × 181) was obtained from the BrainWeb database
(McGill University, Montreal, QC, Canada) [50], which has been
simulated for 1 mm slice thickness, 3% noise and 20% intensity non-
uniformity. The image slice was zero-padded to 256 × 256 pixels
and its k-space was retrospectively undersampled by a variable-
density random sampling pattern with 85% undersampling. Finally
in clinical patient study, a Dixon MRI dataset was acquired on a
Philips Ingenuity TF PET–MRI scanner (Philips Healthcare, Cleveland,
OH). The MRI subsystem of this dual-modality imaging system is
equipped with the Achieva 3.0 T X-series MRI system. A whole body
scan was acquired using a 16-channel receiver coil and a 3D multi-
echo 2-Point FFE Dixon (mDixon) technique with parameters: TR =
5.7 ms, TE1/TE2 =1.45/2.6, flip angle =10º and slice thickness of
2 mm, matrix size of 480 × 480 × 880 and in plane resolution of
0.67 mm × 0.67 mm. From this sequence, in-phase, out-of-phase,
fat and water (IP/OP/F/W) images are reconstructed. For the
comparison of SCAD- and l1-based wavelet regularizations, a
representative image slice of OP image was zero-padded to
512 × 512 pixels and its k-space was retrospectively undersampled
Fig. 2. Reconstruction of the XCAT phantom through zero-filling, gradient-based l1 and SC
trajectories (top) and a variable-density spiral trajectory (bottom), respectively, correspon
of the reconstructed images from the true fully sampled image.
by the Cartesian approximation of radial trajectory with 83%
undersampling. Note that the k-spaces of the studied datasets
were obtained by forward Fourier transform of the image slices.

All of our CS-MR reconstructions were performed in MATLAB
2010a, running on a 12-core workstation with 2.40 GHz Intel Xeon
processors and 32 GB memory. The improvement of image quality
was objectively evaluated using peak signal to noise ratio (PSNR)
and mean structural similarity (MSSIM) index, [51] between the
ground truth fully sampled image, x⁎ and the images recon-
structed by l1- and SCAD-based regularizations, x. The PSNR is
defined as:

PSNR x; x�
� � ¼ 20 log10

max
1≤i≤N

jx�i j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N∑

N
i¼1jx�i −xij2

q
0
BBB@

1
CCCA

MSSIM, which evaluates both nonstructural (e.g., intensity) and
structural (e.g., residual streaking artifacts) deviations of an image
from its reference image, is given by:

SSIM x; x�
� � ¼ 2μxμx� þ C1ð Þ 2σxx� þ C2ð Þ

μx
2 þ μx �2 þC1

� �
σx

2 þ σx �2 þC2
� �

MSSIM x; x�
� � ¼ 1

L

XL
l¼1

SSIM xl; x
�
l

� �

where the mean intensity, μ and standard deviation σ, of x and x⁎

and their correlation coefficient σxx*, are calculated over L local
image patches. The constants C1 = (K1D)2 and C2 = (K2D)2 are
introduced to avoid instability issues, where D is the dynamic range
of pixel values. K1 = 0.01 and K2 = 0.03 according to Ref. [51].
Based on this metric, a perfect score, i.e. MSSIM (x, x⁎) = 1 is
achieved only when the image x is identical to the ground truth
image x⁎. In addition, the reconstructed images were qualitatively
compared through visual comparison and intensity profiles. In all
reconstructions, a tolerance of η=1× 10−4 was used in Algorithm 1
to declare the convergence of the algorithms.
AD ADMM algorithms from the k-spaces sampled by 8 equally spaced radial Fourier
ding to 98.33% and 98.30% undersampling. The difference images show the deviations
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Table 1
Summary of the peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM) performance of the studied algorithms in CS-MRI with respect to fully sampled
(reference) images.

Dataset PSNR (dB) SSIM Iterations | CPU time/Iter. (s)

Zero-Filling L1 SCAD Zero-Filling L1 SCAD L1 SCAD

XCAT (Radial) 17.66 26.03 35.89 0.21 0.83 0.98 2130 0.06 2862 0.08
XCAT (Spiral) 14.21 31.41 52.66 0.16 0.84 0.99 2489 0.07 2745 0.08
MR Angiogram 24.65 28.32 28.60 0.64 0.69 0.70 94 0.83 138 0.97
BrainWeb 14.84 18.52 20.36 0.39 0.59 0.62 335 0.49 354 0.66
Brain mDixion 23.76 27.91 29.13 0.31 0.98 0.99 96 1.84 102 2.12

The number of iterations and the computation (CPU) time per iteration (in seconds) are also reported.
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4. Results

4.1. CS-MR Image Reconstructions

Fig. 2 shows the results of image reconstruction in XCAT phantom
for radial and single-shot variable density spiral trajectories, in first
ig. 3. (A) Reconstruction of theMR angiogram dataset through zero-filling, gradient-based l1 and SCAD ADMM algorithms using a 3D stack of a single-shot variable-density spira
ajectory (78.7% undersampling). The L1 and SCAD images are shown with the same display window. (B) The illustration of k-space undersampling pattern. (C) The comparison
F
tr

of intensity profiles of reconstructed images along the dash line shown on the true image
and second rows, respectively, and compares the images recon-
structed by zero-filing, l1- and SCAD-based ADMM algorithms with
discrete gradient sparsifying transform. This figure also shows the
difference images between true and reconstructed images. As can be
seen, the proposed regularization technique has efficiently recov-
ered the true image and outperformed its TV counterpart in both
.

l

image of Fig.�3


Fig. 4. (A) Reconstruction of the BrainWeb phantom through zero-filling, wavelet-based l1 and SCAD ADMM algorithms using a variable density random sampling (85%
undersampling). The L1 and SCAD images are shown with the same display window. (B–C) As in Fig. 3.
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cases. In this simulation study with extremely high undersampling, the
involved parameters, i.e. ρ, λ and a, were heuristically optimized to
obtain the best case performance of the algorithms. For the radial
sampling results, the optimized parameters were set to ρ = 0.5, λ =
0.03, a = 3.7 for SCAD and ρ = 0.2, λ = 0.05 for TV. Similarly, in the
spiral sampling, the parameters were set to ρ=0.15, λ=0.15, a = 3.7
for SCADand ρ=0.5,λ=0.15 for TV. The quantitative evaluation of the
algorithms in terms of PSNR and SSIM index is presented in Table 1. The
results show that the SCAD regularization significantly improves peak
signal to noise ratio in the reconstructed images and also gives rise to a
perfect similarity between the true and the reconstructed images. It
should be noted that at sufficiently high sampling rate the l1-based TV
regularization can restore the underlying image as faithfully as the
SCAD regularization. However, we purposefully lowered the sampling
rate to evaluate the ability of algorithms in CS-MRI from highly
undersampled datasets.

In Fig. 3 (A), a representative slice of the reconstructed MRA
images is compared with the fully sampled ground truth. The visual
comparison of the regularized reconstructions shows that both l1-
based TV and SCAD regularizations have noticeably suppressed noise
and undersampling artifacts in comparison with zero-filling, which is
in fact an un-regularized reconstruction. However, a close comparison
of the images reveals that the SCAD regularization results in a higher
image contrast (see arrows), since it exploits the weighting factors
that suppress regularization across boundaries. Fig. 3 (B) also shows
the k-space trajectory used for undersampling and the intensity
profiles of the reconstructed images along the dashed line shown on
the true image. The profiles also demonstrate that the SCAD
regularization technique can improve the performance of its TV
counterpart. The algorithms were also quantitatively evaluated based
on PSNR and MSSIM metrics. The results summarized in Table 1
further demonstrate the outperformance of the proposed regulariza-
tion technique. Note that during image reconstruction of this and the
other two brain datasets, we first optimized the involved parameters
of the ADMM algorithm, i.e. λ and ρ, for l1-based regularizations to
obtain the best case performance. Then, we optimized the perfor-
mance of the SCAD regularization using the same values for the scale
parameter a in Eq. (16). For this dataset, the optimal parameters were
set to λ = 1800, ρ = 1.2 and a = 100.

Figs. 4 and 5 (A) show the image reconstruction results of the
simulated (BrainWeb) and clinical brain Dixon datasets, respec-
tively. As mentioned earlier, translation-invariant wavelets were
employed as sparsifying transforms. As can be seen in both cases, the
proposed regularization technique depicts improved performance in

image of Fig.�4


Fig. 5. (A) Reconstruction of the clinical brain Dixon (out-of-phase) dataset through zero-filling, wavelet-based l1 and SCAD ADMM algorithms using a radial trajectory (87.54%
undersampling). The L1 and SCAD images are shown with the same display window. (B–C) As in Fig. 3.
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reducing the aliasing artifacts and restoring the details in compar-
ison with l1-based regularization (see arrows). In Figs. 4 and 5(B), k-
space undersampling patterns as well as line profiles of the
reconstructed images along the dash line in true images are
shown. The line profiles demonstrate that the SCAD regularization
can restore the true profiles more faithfully. As will be elaborated in
the Discussion section, this regularizer exploits the redundant
information in the image being reconstructed in order to suppress
the thresholding of wavelet coefficients of image features and
thereby to improve the accuracy of the reconstructed images. The
quantitative evaluations of the l1-based and SCAD regularizations
presented in Table 1 demonstrate that the proposed regularizer
achieves an improved SNR and structural similarity over its
counterpart. The optimal parameters obtained for the simulated
(BrainWeb) and clinical brain Dixon datasets were set to λ = 3, ρ=
0.2 and to λ = 3, ρ = 0.5 and a = 10, respectively.

4.2. Convergence rate and computation time

Table 1 summarizes the number of iterations and the computa-
tion (CPU) time per iteration for l1 and SCAD-ADMM algorithms
obtained for the studied datasets. Overall, for retrospective recon-
struction of a dataset of size 256 × 256 × 30, the TV and SCAD-
ADMM algorithms require about 0.83 and 0.97 s per iteration in our
MATLAB-based implementation. For the simulated BrainWeb and
clinical brain Dixon datasets, which had matrix sizes of 256 × 256
and 512 × 512 and where wavelet transforms were used, the
algorithms required an increased CPU time per iteration. This is
due to the fact that wavelet transforms, particularly translation-
invariant wavelets, require more arithmetic operations compared to
finite differences (discrete gradients) and hence present with higher
computational complexity. In practical settings, an iterative algo-
rithm is said to be convergent if it reaches a solution where the
image estimates do not change (or practically change within a
certain tolerance determined by a stopping criterion) compared to
the succeeding iteration [52]. As mentioned earlier, a tolerance of η
= 1 × 10−4 was used in Algorithm 1 to declare the convergence of
the algorithms. For the parameters optimally tuned, it was found
that the l1-based ADMM algorithm generally converges after a fewer
number of iterations in comparison with the SCAD-ADMM. In the
MRA, BrainWeb and brain Dixon datasets, it converged after 94, 335
and 94 iterations, respectively, while the SCAD converged after 138,
354 and 102 iterations, respectively. The same trend was also
observed for the XCAT phantomwith radial and spiral undersampling
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patterns. This convergence behavior should be ascribed to the
weighting scheme that SCAD regularization exploits. In fact, this
weighting scheme attempts to iteratively recognize and preserve
sharp edges. As a result, it takes the algorithm more iterations to
identify true edges from those raising from aliasing and streaking
artifacts. However, our results showed that the SCAD regularization
achieves a higher PSNR at the same common iteration in comparison
with the l1-based regularization. Fig. 6 shows PSNR improvementwith
iteration number in CS-MR reconstruction of the MRA, BrainWeb and
the brain Dixon datasets, respectively. As can be seen, the decreased
convergence rate of (or the increased number iterations in) the
proposed regularization technique is compensated with an overall
increased PSNR.

5. Discussion

Fast MRI data acquisition is of particular importance in
applications such as dynamic myocardium perfusion imaging and
contrast-enhanced MR angiography. Compressed sensing provides a
promising framework for MR image reconstruction from highly
undersampled k-spaces and thus enables a substantial reduction of
Fig. 6. PSNR improvement as a function of iteration number for the CS-MR
reconstruction of: (A) the MRA, (B) BrainWeb and (C) the brain Dixon dataset
using l1 and SCAD-based regularizations.
s

acquisition time [11,53]. In this study, we introduced a new
regularization technique in compressed sensing MR image recon-
struction based on the non-convex smoothly clipped absolute
deviation norm with the aim of decreasing the sampling rate even
lower than it is required by the conventional l1 norm. The CS-MRI
reconstruction was formulated as a constrained optimization
problem and the SCAD norm was iteratively convexified by linear
local approximations within an augmented Lagrangian framework.
We employed finite differences and wavelet transforms as a
sparsifying transform and compared the proposed regularizer with
its l1-based TV counterpart.

5.1. Edge preservation and sparsity promotion

The linearization of the SCAD norm in effect gives rise to a
reweighted l1 norm. In general, our qualitative and quantitative
results showed improved performance of the SCAD over the l1 based
regularization. This outperformance is due to the fact that the
reweighted l1 norm non-uniformly thresholds the gradient fields
and wavelet coefficients of the image estimate according to
adaptively derived weighting factors (Step 4 in Algorithm 1). In
fact, these weighting factors, on one hand, suppress the smoothing
(thresholding) of edges and features and on the other hand, enforce
the smoothing of regions contaminated by noise and artifacts.
Fig. 7(A) and Fig. 7(B) show respectively the weighting factors
associated with gradient fields of the MRA image (Fig. 3) and those
with the wavelet coefficients of the brain Dixon image (Fig. 5) as a
function of iteration number. Fig. 7(B) only shows the weights of the
detail coefficients at resolution 4 in the diagonal direction. It is worth
mentioning that the wavelet transform decomposes an image into
one approximate subband and several (horizontal, vertical and
diagonal) detail subbands. It can be seen that as iteration number
increases: i) the true anatomical boundaries are being distinguished
from false boundaries arising from artifacts, especially in the case of
the brain dataset where the radial sampling pattern results in
streaking artifacts and ii) the emphasis on edge preservation (the
wall of vessels or the border of structures) increases by assigning
zero or close to zero weights (dark intensities) to edges and the
suppression of in-between regions is continued by high-value
weights (bright intensities). Furthermore, the dynamic range of
the weighting factors is continuous and varies based on the
importance and sharpness of the edges, which demonstrates the
adaptive nature of this weighting scheme. The end result of this
procedure is in fact the promotion of the sparsity of image estimate
in the domain of the sparsifying transform. Fig. 8(A) and Fig. 8(B)
show the horizontal gradient field (θh) of the MRA frame shown in
Fig. 3 at iteration number 5, thresholded respectively by soft-
thresholding and weighted soft-thresholding with the same regu-
larization and penalty parameters. The histograms of the images (20
bins) are shown in Fig. 8(C–D). The results show that the SCAD
weighting scheme promotes the sparsity by zeroing or penalizing
small value coefficients that appear as noise and incoherent (noisy-
like) artifacts. This is also noticeable in the histograms where the
frequency of coefficients in close-to-zero bins has been reduced,
while it has been increased in the zero-bin.

To enhance sparsity, Candes et al. [30] proposed a reweighted l1
norm by iterative linearization of a quasi-convex logarithmic
potential function. They demonstrated that unlike the l1 norm, the
resulting reweighted l1 norm [with the weights wi

k = λ(|θik| + ε )−1,
in our notation in Eq. (19)] provides amore “democratic penalization”
by assigning higher penalties on small non-zero coefficients while
encouraging the preservation of larger coefficients. In this sense, a
reweighted l1 norm regularization resembles an l0 norm, which is an
ideal sparsity-promoting, but, intractable norm. Recently, Trzasko et
al. [19] proposed a homotopic l0 norm approximation by gradually
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Fig. 7. Evolution of the weights (wk) of (A) the MRA frame and (B) brain Dixon image
shown in Figs. 3 and 6 with iteration number. The gray-color bar shows the dynami
range of the weights.
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c

reducing the perturbation parameter in quasi-convex norms (e.g.
the logarithmic function) to zero. It has been shown that the solution
of l0 penalized least squares problems, such as the one in Eq. (18)
with an l0 regularizer, can be achieved with a hard thresholding rule
[54,55], which thresholds only the coefficients lower than a
threshold

ffiffiffiffiffiffi
2λ

p
. As observed by Trzasko et al., the hard thresholding

rule associated with l0 regularization increases sparsity and offers
strong edge retention in comparison with soft thresholding, which is
associated with l1 regularization. In comparison with the weighting
scheme of Candes et al. and in connection with the homotopic l0
approximations, the linearized SCAD regularization invokes a
weighted soft-thresholding rule that in limit approaches hard
thresholding rule. Fig. 9(A) compares the standard hard and soft
thresholding rules with the weighted soft-thresholding rule
obtained from the linearization of the SCAD function [according to
Eq. (17)], for different values of the scale parameter a and for λ= 1.
Similarly, Fig. 9(B) compares those standard rules with the weighted
soft-thresholding rule by Candes’ weighting scheme for different
values of the perturbation parameter ε and for λ=1. As can be seen,
for small values of a, the weighted soft-thresholding rule of SCAD
resembles hard thresholding, while for small values of ε, the Candes'
weighted rule is at best between the standard hard and soft
thresholding. On the other hand, for large values of a and ε, the
SCAD and Candes' rules respectively approach soft thresholding and
an identity rule (which can be thought of as a soft-thresholding with
zero threshold). In fact, Fan and Li [37] proposed the SCAD potential
function to improve the properties of l1 and hard thresholding
penalty functions (those approximating l0 norm) in terms of
unbiasedness, continuity and sparsity. This function avoids the
tendency of soft-thresholding on over-penalizing large coefficients
and the discontinuity and thus instability of hard-thresholding and
at the same time, promotes the sparsity of the solution [37].
Generalized lp Gaussian norms, for 0 b p b 1, have also been
successfully used in the context of CS-MRI reconstruction [19,56].
The sparsity induced by lp norms is promoted as p approaches zero,
since the resulting norm invokes a pseudo l0 norm. In [57], Foucart
and Lai showed that lp norms give rise to a reweighted l1 norm with
weighting factors wi

k = λ(|θik| + ε)p − 1 (in our notation), which
reduces to Candes' weights for p = 0. Chartrand [56] derived the so-
called p-shrinkage rule for lp norms, which is in fact a weighted soft
thresholding rule with the weights wi

k = λ(|θik|)p − 1. Based on the
asymptotic behavior of Candes' weighted soft thresholding (Fig. 9),
one can conclude that lp norms (with 0 b p b 1) best approach a semi-
hard thresholding rule for p = 0 and ε = 0, while the thresholding
rule invoked by linearized SCAD can well approach a hard thresh-
olding rule.

The results presented in Figs. 3–5 show that the images
reconstructed by l1 based-ADMM algorithm suffer from an overall
smoothing in comparison with SCAD and show to some extent
reduced stair-casing artifacts that are sometimes associated with TV
regularization using gradient and time-marching based optimization
algorithms. These artifacts, which are false and small patchy regions
within a uniform region, are often produced by first-order finite
differences and can be mitigated by second-order differences [23] or
a balanced combination of both [58]. As noted by Trzasko et al. [19]
and implied from the above discussion, the soft thresholding
(associatedwith l1 norm) in the ADMMalgorithm tends to uniformly
threshold the decomposition coefficients, thereby it leads to a global
smoothing of the image (similar to wavelet-based reconstructions)
and thus the reduction of false patchy regions.

5.2. Computational complexity and parameter selection

In this study, we solved the standard CS-MRI image reconstruc-
tion defined in Eq. (2) using an augmented Lagrangian method.
Recently, Ramani et al. [40] studied AL methods for pMRI and
showed that this class of algorithms is computationally appealing in
comparison with nonlinear conjugate gradient and monotone fast
iterative soft-thresholding (MFISTA) algorithms. In theminimization
of the AL function with respect to x, they solved Eq. (11), which also
included sensitivity maps of array coils, using a few iterations of the
conjugate-gradient algorithm. In contrast, we derived a closed-form
solution for this equation in Cartesian CS-MRI, which allowed
speeding up the algorithm, particularly by the per-computation of
the eigenvalue matrix of the discrete gradient matrix Ψ. As
mentioned earlier, this analytic solution can also be assessed by
regridding the non-Cartesian data or using the approximation
method proposed in [45].

The convergence properties of the proposed SCAD-ADMM
algorithm, similar to other optimization algorithms, depends on
the choice of the involved parameters, i.e. the penalty parameter ρ,
the regularization parameter λ and the SCAD’s scale parameter a.
The choice of these parameters in turn depends on a number of
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Fig. 8. The sparsity promotion of SCAD regularizer. (A–B) The horizontal gradient field of the image frame shown in Fig. 3 (at iteration 5) thresholded respectively by soft and
weighted soft thresholding with the same regularization and penalty parameters. (C–D) The histograms of the images shown in (A) and (B), respectively (with 20 bins). Similar
display window is used for the images shown in (A) and (B).
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factors including the acquisition protocol, level of noise and the task
at hand. As mentioned earlier in the clinical datasets, we optimized
the parameter λ and ρ for l1 regularization to obtain the best
qualitative and quantitative results. Using the same parameters, the
parameter a was optimized for SCAD regularization. In fact, we
followed this parameter selection for an un-biased comparison of
the l1 and SCAD regularizations in order to demonstrate that the
proposed technique can improve the performance of l1 regulariza-
tion by incorporating iteratively derived weighting factors. Howev-
er, this parameter selection might not be optimal for SCAD and its
convergence properties, since this regularizer tends to gradually
and cautiously remove noisy-like artifacts. In particular, we found
that higher values of λ improved the convergence rate of the l1- and
hence SCAD-based algorithms, but at the same time, resulted in
overall smoothing of image features, which in the case of SCAD
regularization could be compensated by decreasing the scale
parameter a. The latter parameter, in fact, controls the impact of
weighting factors in SCAD regularization. The lower values of this
parameter increase edge-preservation because, as can be seen in
Fig. 9(A), the resulting weighted soft thresholding approaches a
hard thresholding rule, which is akin to l0 regularization. While
higher values of a reduce edge preservation, since the weighting
factors become uniform and approach the parameter λ. In other
words, as seen in Fig. 9(A), the weighted soft thresholding
approaches the standard soft thresholding with a uniform threshold
value of λ. In general, it was observed that the parameter a is less
data-dependent and shows a higher flexibility for its selection in
comparison with λ. An alternative way to choose the pair
parameters (a, λ) for SCAD could be two-dimensional grids search
using some criteria such as cross validation and L-curve methods
[6], which calls for future investigations.

5.3. Future directions

As our results demonstrate, the SCAD regularization allows for
more accurate reconstructions from highly undersampled data and
hence reduced sampling rate for rapid data acquisitions. However, it
is worth to mention the limitations and future outlook of the
proposed SCAD-ADMM algorithm. In this study, we evaluated the
proposed algorithm for Cartesian approximation of radial and spiral
trajectories and compared its performance with l1-based ADMM.
These approximation and synthetization of the k-spaces from
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Fig. 9. Comparison of hard (H) and soft (S) thresholding rules with soft thresholding
(Sw) rules weighted by: (A) the linearization of SCAD function for different scale
parameters a and (B) Candes’ approach for different perturbation parameters.
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magnitude images cannot accurately represent the actual data
acquisition process in MRI. Nevertheless, our comparative results
showed that the proposed regularization can improve the perfor-
mance of l1-based regularization using adaptive identification and
preservation of image features. Future work will focus on the
evaluation of the proposed regularization for non-Cartesian datasets
and also parallel MR image reconstruction using AL methods [40].
Performance assessment of the SCAD norm in comparison with a
family of reweighted l1 norms and l0 homotopic norms within the
presented AL framework is also underway.

6. Conclusion

In this study, we proposed a new regularization technique for
compressed sensing MRI through the linearization of the non-
convex SCAD potential function in the framework of augmented
Lagrangian methods. Using variable splitting technique, the CS-MRI
problem was formulated as a constrained optimization problem and
solved efficiently in the AL framework. We exploited discrete
gradients and wavelet transforms as a sparsifying transform and
demonstrated that the linearized SCAD regularization is an itera-
tively weighted l1 regularization with improved edge-preserving
and sparsity-promoting properties. The performance of the algo-
rithm was evaluated using phantom simulations and retrospective
CS-MRI of clinical studies. It was found that the proposed
regularization technique outperforms the conventional l1 regulari-
zation and can find applications in CS-MRI image reconstruction.
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