
 
 

 

  

Abstract— The gradient vector flow (GVF) algorithm has 
been used extensively as an efficient method for medical image 
segmentation. This algorithm suffers from poor robustness 
against noise as well as lack of convergence in small scale 
details and concavities. As a cure to this problem, in this paper 
the idea of multi scale is applied to the traditional GVF 
algorithm for segmentation of brain tumors in MRI images. 
Using this idea, the active contour is evolved with respect to 
scaled edge maps in a multi scale manner. The edge detection 
performance of the modified GVF algorithm is further 
enhanced by applying a threshold-based edge detector to 
improve the edge map. The Bspline snake is selected for 
representation of the active contour, due to its ability to capture 
corners and its local control. The results showed an 
improvement of 30% in the accuracy of tumor segmentation 
against traditional GVF and 10% as compared to Bspline GVF 
in the presence of noise, besides the repeatability of the 
algorithm in contrast to traditional GVF. The clinical 
evaluation also proved the accuracy and sensitivity of the 
proposed method as 92.8% and 95.4%, respectively. 

Keywords- Brain tumor segmentation, Multi scale GVF, 
traditional GVF, B-spline snake. 

I. INTRODUCTION 
Segmentation of brain tumors and reducing the user 

interaction are challenging issues, for which several 
approaches such as global thresholding, fuzzy-
connectedness, Markov random fields (MRFs) [1-2]  have 
been proposed. The active contours have also been applied 
extensively in several medical image segmentation 
applications. Among the existing active contours, level set 
methods have been used in brain tumor segmentation due to 
their ability in handling complex geometries [3]. However, 
they require adjustment of several parameters, which makes 
them user dependent. Also, they are performed in large 
number of iterations; thus, they are time consuming [4].   

The other popular category of active contours, i.e. the 
parametric active contours or snakes are used to represent 
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the boundaries with elastic contours [5]. One of the 
assumptions in implementation of the snakes is that the 
region to be segmented is constructed from few numbers of 
non-overlapping structures. This limits the application of 
basic snakes in segmenting medical images, especially in 
brain tumor segmentation.  

Several modifications have been made in designing the 
active contours, in order to make them appropriate in 
specific applications. One of such modifications was 
proposed by Xu and Prince [6], which is called “gradient 
vector flow (GVF) snake”. In the GVF method, a dense 
vector field is generated from the image by using vector 
diffusion, which guides the snake to fit a specific boundary 
[7]. The GVF snake has several advantages over the original 
snakes. For instance, the GVF snake is independent from the 
initial point. Also, it does not require prior knowledge about 
whether to inflate or deflate. Furthermore, in contrast to the 
original snake, in GVF method, the external force is not 
entirely irrotational. Thus, it can capture image concavities 
[6]. Therefore, GVF has become a popular method in 
medical image segmentation [8].  

However, since the gradients are highly prone to noise, 
small scale details and tumor intensity inhomogeneity, the 
GVF external force is difficult to be handled in segmentation 
of tumors in brain MRI images [9]. Moreover, the evolution 
of the GVF snake is greatly dependent on the edge map 
created for it. For assuring the convergence of GVF snake, 
the edge map should be in such a way that while including 
all important edge information present in the image, it 
excludes the false edges created by lower intensity changes. 
In addition, the traditional GVF method requires selection of 
several parameters, which increases the time required for 
convergence [10].  

In this work, the idea of multi-scale based GVF (MSGVF) 
snake is proposed to overcome the above problems with 
GVF snake. In this algorithm edge maps are updated in a 
multi-scale based approach which helps the gradient 
operator to deal with noise more efficiently. 

Along with this multi-scale GVF, two modifications have 
also been made in order to improve the noise performance of 
the original GVF method, in detecting tumor boundaries. At 
first, the well known canny edge operator is applied in 
combination with upper and lower thresholds producing a 
threshold-based edge detector, by which false edges are 
eliminated and most of the prominent edges around the 
tumor area are detected. Secondly, a B-spline snake (or B-
snake) is used in this paper to represent the active contour. 
The B-snake has significant advantages over the traditional 
snake, for example, it exhibits local control, it can capture 
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corners by allowing multiple knots, and its representation is 
compact [10].  

In the next section, the MSGVF Bspline algorithm, for 
brain tumor segmentation is presented. This method is 
successfully performed on the brain MRI images with tumor 
conditions. The results are shown in section III, which show 
enhancement of tumor segmentation using the MSGVF 
Bspline approach. Finally, the discussion on the results is 
presented in section IV.    

II. MATERIALS AND METHODS 

A. Traditional active contours  
A snake is a closed dynamic curve r(s)=[x(s), y(s)], where 

s belongs to the interval [0, 1] [5]. This curve is defined with 
two energy forces: internal energy, and external energy. 
These two energies work in opposition to each other. The 
total energy should be minimized, so that the snake 
converges to the object boundary. 
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where the first and second terms represent the internal and 
external energies of the snake, respectively. α and β are 
weighting parameters of elasticity and stiffness terms, and r’ 
and r” are the first and second derivatives of r with respect 
to s. 

B. GVF Snake 
The external energy in equation (1) can be defined by the 

gradient vector flow field. The GVF field is characterized by 
z(x,y)=[u(x,y), v(x,y)]T that minimizes the energy given by: 

∫ ∫ ∇−∇+
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where f is the image edge map, µ is the smoothness 
degree, u and v are the components of the gradient vector in 
2D space. The GVF snake performs poorly in segmenting 
the corners. Therefore, B-snake can be used to control the 
snake locally and reduce the number of parameters required 
for its representation. 

C. B-snake and GVF 
By using B-snake for contour representation, fewer points 

on the contour can be employed for evolution of the snake. 
Here, the cubic B-splines are used for this purpose. By 
uniform sampling, a set of control points (CP0, CP1, ..., CPN) 
are sampled from the initial contour. Therefore, the initial 
active contour can be approximated by N cubic curve 
segments. The curve is defined by: 
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where Bi(s) are the B-spline basis functions and CPi are 
the control points. 

On each point (xi, yi) distributed uniformly around the 
spline, the GVF force can be denoted by u(x0, y0), v(x0, y0). 
Thus the new points to be obtained after evolution can be 
computed by: 
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The new sample points are used to compute new control 
points by minimizing the equation below: 
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where ( ).CP,...,CP,CPCP N 110 −=  
D. Multiscale Gradient Vector Flow (MSGVF) 

The GVF snake can become more robust to noise, small 
scale details and intensity inhomogeneity, by using the GVF 
in multi-scale stages [9]. This algorithm is based on scale 
space theory. The basic concept of scale space theory is 
generating a sequence of images Iσ(x,y) from the initial 
image I0(x,y). As σ (scale) increases, Iσ(x,y) becomes a 
coarser version of the image obtained in the previous stage 
[11]. 

In each scale, the resulting smoothed image from the 
previous stage is lowpass filtered and the threshold-based 
edge map of this image is computed. The threshold is 
applied due to the generation of various edges around the 
tumor, among which false edges are also present due to 
inhomogeneity in image intensities and noise. The value of 
the upper threshold was chosen for dealing with the edges 
caused by noise and large image gradients. However, the 
lowpass filtering and using the upper threshold causes the 
edges to become blurred, thus, their detection and 
localization becomes difficult [11]. Therefore, the lower 
threshold is selected considering the intensities on tumor 
boundary, in order to preserve the important edges.  

Here, the edge map is computed using Gaussian 
smoothing filters and threshold-based canny edge detector. 
The Gaussian filter used for the scale generation is defined 
as: 
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where σ (the standard deviation of the Gaussian filter) 
denotes the scale. The smoothed image in each scale can be 
acquired by the convolution of the smoothing filter with the 
image obtained in previous scale: 
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The multiscale edge map is computed by taking the 
laplacian of the smoothed image: 
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The final result can be inserted in equation (2) to compute 
the external force of the GVF snake. The number of scales is 
selected to be 5. The Gaussian filter is applied in each scale 
with standard deviations equal to σ = 3, 15, 31, 63, and 127. 
In fact, the ability of changing the smoothing window size in 
multi-scale approach has led to precisely aligning the 
gradient map according to the true edges appeared in tumor 
boundaries.  As it can be observed from Fig.1, the gradient 
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vectors become in alignment with tumor boundaries by 
increasing the scale.  

 
(a) 

 
(b) 

Fig. 1. The GVF of a part of tumor boundary in different scales: (a) scale 1 
(σ=3), and (b) scale 5 (σ=127). The figure shows the alignment of gradient 
vectors (in blue) with tumor borders over scale. 

 
The initial contour for the GVF snake is selected 

manually, which is updated in each of the proceeding scales.  
The GVF B-snake deformation initializes from the position 
of control points reached in the previous scale. The 
segmentation is completed after 40 iterations. 

E. MR Dataset 
The datasets used for this work are adopted from Surgical 

Planning Laboratory at Harvard Medical School website 
(www.spl.harvard.edu/). The images are taken from patients 
with “Oligoastrocytoma” and “glioblastoma” brain tumors, 
acquired on a 1.5T scanner. The resolution of the images is 
256x256 with 120 or 90 slices (depending upon each 
dataset). The voxel resolution is 1×1×1.5 mm2. An example 
of one of the datasets with Oligoastrocytom pathology is 
shown in Fig.2.  

 
Fig. 2. Axial cross section of T1-weighted MRI from a case with tumor in 
left perisylviar region of brain. 

III. RESULTS 
The MSGVF B-Spline was successfully applied on the 

datasets and compared to the manual segmentation 
performed by an expert rater. The algorithm was run on 
individual slices containing tumor. 

The result of applying the MSGVF Bspline snake in 
comparison with the MSGVF with traditional snake is 
shown in Fig.3.  

 
         (a) 

 
           (b) 

Fig. 3. The result of applying (a) MSGVF Bspline algorithm, and (b) 
MSGVF with traditional snake on one of the slices of case 1.  As it can be 
observed the B-spline snake performs superior to the traditional snake in 
capturing the corners. 

This figure illustrates the ability of B-snake in capturing 

the corners, which is due to the local control of B-snakes and 
the feasibility of selecting knots. Therefore, here the results 
of MSGVF with B-snake are considered for further analysis 
on the performance of multi scale method. 

As mentioned previously, the MSGVF is meant to be 
more robust against noise and intensity inhomogeneity in 
contrast to traditional GVF. Therefore, salt and pepper type 
of noise with intensity in the range of 0.01- 0.03 was added 
to the images in order to examine the performance of the 
MSGVF Bspline algorithm. This type of noise was chosen 
because it produces high variations in the gradients of the 
image. As GVF segmentation method is highly dependent on 
gradients of the image, the gradients can be trapped by the 
edges created by this type of noise. Thus, it can best examine 
the performance of gradient operator in edge detection 
during the curve evolution. The effects of applying the 
MSGVF Bspline with Gaussian kernel in various scales in 
the presence of noise are shown in Fig. 4.  

 
                 (a) 

 
                   (b) 

 
                (c) 

 
(d)                   

 
(e) 

Fig. 4. The performance of the MSGVF algorithm with Gaussian filter in 
presence of noise (with intensity= 0.01). The segmented part is shown in 
red. The result in (a)  scale 1 (σ=3) , (b) scale 2 (σ=15) (c) scale 3(σ=31), 
(d) scale 4 (σ=63), and (e) scale 5 (σ=127). 

 
As it is apparent from Fig.4, the performance of MSGVF 

with Gaussian smoothing filter in the presence of noise is 
highly improved over the subsequent scales. The visual 
inspection of the result of Fig. 4(d) shows the ability of the 
proposed method in tumor segmentation. These results were 
evaluated qualitatively by comparing manual segmentation 
carried out by an expert radiologist with the outcome of the 
algorithm in each scale. Then, the resulting sensitivity and 
accuracy for one of the datasets were calculated to represent 
the evaluation, which are summarized in Table I.  

TABLE I 
THE VALIDATION RESULTS FOR COMPARING THE PERFORMANCE OF THE 

ALGORITHM OVER SCALE 

Scale No. 
Accuracy 

(%) 
Sensitivity 

(%) 

scale 1 62.04 23.64 

scale 2 71.14 46.3 

scale 3 75.05 58.91 

scale 4 79.38 71.82 

scale 5 87.38 92.81 
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Fig.5 illustrates the comparison of applying Traditional 
GVF, Bspline GVF, and MSGVF Bspline procedures in 
detecting the boundaries of tumor when noise is added.  

 
(a) 

 
(b) 

 
(c) 

Fig. 5. The comparison between the results of applying (a) Traditional 
GVF, (b) Bspline GVF, and (c) MSGVF Bspline algorithms, in the presence 
of noise (intensity=0.02) on detecting the tumor borders. 

 
As it is apparent from Fig.5, the MSGVF Bspline 

algorithm has shown a degree of robustness in the presence 
of noise and small scale details. 

The quantitative comparison of the performance of the 
three algorithms which is averaged for the three datasets is 
presented in Table II. In addition, the time required for each 
algorithm to converge is shown in the last column. 
 

TABLE II  
THE VALIDATION RESULTS FROM VARIOUS METHODS 

Algorithm Accuracy 
(%)  

Sensitivity 
(%)  

Time (sec) 

Traditional GVF 
 

59.95 12.88 7.2 

 BSpline GVF 
 

80.68 63.14 3.6 

 Multiscale Bspline GVF 92.8 95.4 15.2 
 

As it is apparent from the outcome of Table II, the 
MSGVF Bspline exhibits significant improvement over the 
traditional and Bspline GVFs. As discussed earlier, the 
Bspline snake needs less time to converge due to its compact 
representation in comparison with the traditional snake. 
However, the MSGVF Bspline is performed in longer 
duration than the other two methods, due to being processed 
in a sequence of scales. 

The outcome of several runs of the algorithms in the 
presence of salt and pepper noise showed that the boundary 
segmented by MSGVF Bspline method was retained at each 
time, in contrast to the traditional and Bspline GVF snakes. 
This illustrates the relative insensitivity of MSGVF Bspline 
algorithm to random noise. Therefore, this approach is found 
repeatable in various conditions in comparison with 
traditional and Bspline GVF.   

IV. CONCLUSION 
 The performance of traditional GVF method degrades in 

segmenting brain tumors in noisy MRI images, due to the 
complexity of the shape of the brain tumors (such as small 
scale details). The proposed method was found robust in 
detecting tumor boundaries, in the presence of noise, 
intensity variations and small scale details. This happens 
because in the scale space, in finer levels the region consists 
of a number of small details including outliers. In higher or 

coarser scales, the small details are merged to form larger 
regions [11]. This process while preserving small details, 
handles the large variations in image gradients.  

This algorithm appeared more robust compared to the 
traditional GVF and Bspline GVF. The Bspline snake 
employed as the active contour improves the algorithm to 
capture corners and to reduce the computation. It also gives 
the opportunity to locally control the snake by changing the 
knots. The threshold-based edge detector enhanced the 
performance of true edge detection by reducing false 
positive rates caused by intensity changes and noise. 
Ultimately, the multi scale GVF Bspline method 
outperforms the traditional and Bspline GVF methods by 
about 30% and 10% improvement in accuracy, respectively.  

However, applying MSGVF algorithm to segment tumors 
in brain images requires selecting an initial contour due to 
presence of small structures and inhomogeneity of the brain 
images. This can become less problematic by changing the 
upper and lower values of the edge threshold and changing 
the type of the edge detector. 

We are currently working on enhancing the robustness of 
the algorithm in high noise environments, optimizing the 
method by changing the algorithm of edge map generation, 
and on making this segmentation method completely 
automatic to aid neurosurgeons in segmenting the desired 
structures as a pre-processing step in image guided surgery 
systems.    
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