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Abstract—There are two types of scatterers in a multipath
propagation environment: fixed and non-fixed scatterers. Fixed
scatterers like buildings, mountains and tree stems do not move,
while non-fixed (moving) scatterers like cars, people and tree
leaves move from their initial positions. In addition to different
movements of the mobile station (MS) that cause different
kinds of Doppler fading, movements of non-fixed scatterers are
also anticipated to generate other kinds of fading/correlation.
This fading changes depend on the type of the propagation
environment and the type of movements of local surrounding
scatterers. In this paper we characterize these effects in terms
of temporal correlations. In this study we assume constant speed
for the MS and random displacements for scatterers based on
stationary-increment Wiener vector process. As it will be verified,
these random movements have direct effect on the channel
process power spectral density (PSD).

I. INTRODUCTION

Available models to characterize the cross-correlation func-
tion (CCF) of multiple-input multiple-output (MIMO) outdoor
wireless communication channels mostly assume a constant
speed vector for the MS, while they consider immobile scat-
terers on the azimuth plane1. In reality some of these scatterers
are fixed, while some others move around in a non-systematic
form. Studying the effect of these scatterers’ displacements
cause new fading(s) and correlations in the CCF of the channel
process h(t, ω). This is especially true for scatterers close to
the mobile station (MS).

There are very few works in the literature to consider the
effects of local scatterers’ displacements on wireless channels,
e.g. [1]–[3]. Thoen, Van der Perre and Engels in [1] assume
uniform distribution for the angle between the direction of
movement and the direction orthogonal to the reflecting sur-
face, uniform distribution for the reflection angle associated
to moving scatterer, and uniform distribution U [0, vmax) for
the speed of scatterers, while the propagation environment is
assumed to be isotropic. In such a situation, the temporal
correlation function is appeared as an averaged form of the
square of a zero-order Bessel function [4]. Molisch in [2]
proposes a systematic measurement of the moving-scatterer
statistics with special orientation to see its effects on MIMO

1By definition, the azimuth plane is the two-dimensional horizontal plane.

capacity. As the angular power spectrum is an essential param-
eter for the capacity, shadowing of components coming from a
certain direction will have a major impact. Medlbo, Berg, and
Harrysson in [3] perform an analysis based on measurements
to see the effects of the important finding caused by the
movements of scatterers in the vicinity of either MS or BS
antenna. This analysis is supported by a simple model, based
on a single moving scatterer (a person), which shows good
agreement with their measurements.

In this paper we assume a random displacement model for
the movements of scatterers based on stationary-increment
Wiener processes, while we assume a constant MS speed
vector on the azimuth plane. The scattering environment is
a two-dimensional (2D) non-isotropic propagation medium
when multi-element directional antennas (MEA)s are em-
ployed at both receiver and transmitter ends. In this scenario,
both stations receive a large number of waveforms reflected
from moving scatterers. The effect of random movements of
each scatterer changes the relative distance of the scatterer
to the MS coordinate. Therefore, it has a direct effect on
the propagation delay caused by that scatterer. While the MS
moves with a constant speed on the azimuth plane, it may have
other movements like arbitrary rotations around the azimuth
axis2, in the situation when the MS moving trajectory path
is not a straight line. In this situation, almost all rotational
movements of the MS are to align the coordinate with the
direction of its trajectory. These rotations are usually very
slowly varying with time and with very low impacts on the
CCF, therefore we ignore them in this paper [5].

The rest of this paper is organized as follows: Notations and
assumptions are introduced in Section II. In Section III, the
proposed CCF is derived and analyzed. In Section IV power
spectral density analysis is provided along with numerical
examples. Finally, conclusions are summarized in Section V.

II. NON-ISOTROPIC SCATTERING MEDIUM WITH

NON-FIXED (MOVING) SCATTERER

Figure 1 shows a pair of BS-MS antennas from a MIMO
communication system with directional antennas and in a

2By definition, the azimuth axis is the axis passing through the MS and
perpendicular to the azimuth plane.
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TABLE I
NOTATIONS AND THEIR DESCRIPTIONS

OB , OM BS coordinate, MS coordinate
hpm(t, ω) Channel transfer function between pth BS antenna element and mth MS antenna element

aB
p Position vector of the pth antenna element on the BS side relative to OB

aM
m Position vector of the mth antenna element on the MS side relative to OM

ΘB
i The unity vector pointing to the direction-of-departure (DOD) of the ith dominant path from the BS

ΘM
i The unity vector pointing to the direction-of-arrival (DOA) of the ith dominant path to the MS

ΘB
i ; ΘM

i DOD of the ith dominant path from the BS; DOA of the ith dominant path to the MS
GB

p (ΘB ; ω) Antenna propagation pattern of the pth antenna element of the BS
GM

m (ΘM ; ω) Antenna propagation pattern of the mth antenna element of the MS
XS

i (t) Displacement vector of the ith scatterer between two time instances 0 and t
τp,m;i Delay between pth BS antenna element and mth MS antenna element via ith dominant path
gp,m;i Gain between pth BS and mth MS antenna elements via the ith dominant path, approximated by gi

ζi Normalized variance of the Normal Wiener process used to represent displacements of the ith scatterer
φi; ω Phase contribution along the ith dominant path; Carrier frequency
τ ; σ Mean and delay spread of the time-delay distribution function τi

v; c MS speed vector; Wave propagation velocity
η; I Pathloss exponent; Number of total dominant paths

OB

i th  transmitting
direction

i th  receiving
direction

B
iQ

M
iQ

c

Q B
i

TB
pa

Propagation Delay
Relative to the O B

c

Q M
i

TM
ma

Propagation Delay
Relative to the OM

v

OM

B
pa

M
ma

Fig. 1. Moving MS on the azimuth plane with constant speed vector v; pth
antenna of the BS located at aB

p , mth antenna of the MS located at aM
m in

their local coordinates, and ith propagating path caused by the ith moving
scatterer through the scattering medium.

two-dimensional (2D) non-isotropic propagation environment,
when scatterers have random displacements and the MS moves
with a constant speed vector. As it is well-known, time-
variations in a random wireless channel are the direct result
of movements of both MS and scatterers. In the set-up of this
paper, the initial condition of the MS coordinate OM is defined
with respect to the BS coordinate OB , while its displacements
are characterized by a constant speed vector v. Besides,
the displacement vector of the ith scatterer with respect to
its initial condition is represented by XS

i (t). While these
displacements contribute in some delays, initial situations of
scatterers produce initial delays which is explained in more
details in this section.

Table I presents the employed notations throughout this
paper in which superscripts B and M indicate variables at
BS and MS sides, respectively. In this paper, we establish the
following set-up based on the following assumptions:

A1) We assume that the BS antenna array is immobile in its
coordinate OB , and the MS antenna array moves as a
solid object with its coordinate OM . The displacement
of the MS is represented by a 2D constant vector v
to represent linear displacements between OB and OM

on the azimuth plane and at time t. The displacements

of this scatterer, XS
i (t) ∆=

[
xS

i,1(t)

xS
i,2(t)

]
, follows a 2D

stationary-increment Wiener random vector3 [6, Chapter
10]: The components of XS

i (t), xS
i,1(t) and xS

i,2(t), are
independent non-stationary zero-mean Normal random
processes with stationary-independent increments4. For
the ith scatterer, the properties of XS

i (t) and its compo-
nents are summarized as follows:

a) xS
i,1(t) and xS

i,2(t) are independent identically dis-
tributed (i.i.d.) zero-mean non-stationary Normal
random variables, with variance ζit (ζi � 0), and
autocorrelation ζi min(t1, t2) [6, Chapter 10]:

• fxS
i (t)(x) = 1√

2πζit
e−x2/(2ζit),

• E[xS
i (t)] = 0, and E[xS

i
2(t)] = ζit,

• E[xS
i (t1)xS

i (t2)] = ζi min(t1, t2).
b) xS

i,1(t) and xS
i,2(t) have independent increments:

• E
[
[xS

i (t2)− xS
i (t1)][xS

i (t4)− xS
i (t3)]

]
= 0

for t1 < t2 < t3 < t4.

c) xS
i,1(t) and xS

i,2(t) have stationary-increments:

• E
[(

xS
i (t2)− xS

i (t1)
)2] = ζi(t2 − t1) for t1 <

t2.

Therefore when the ith scatterer moves, it contributes
to the delay associated to this propagating path. The

3A Wiener process is an independent increment random process which is
used to describe a Brownian motion process. A Wiener random vector is a
vector whose elements are independent Wiener processes.

4Definition [7, Chapter 7]: A random process has independent increments
when the set of n random variables

x(t1), x(t2) − x(t1), · · · , x(tn) − x(tn−1),

are jointly independent for all t1 < t2 < · · · < tn and for all n.
Definition: A stochastic process {x(t) | t ∈ T} where T ⊂ R, is said to

have stationary increments if the probability distribution function for x(s +
t) − x(s) is fixed (the same) for all s ∈ T such that s + t ∈ T . In other
words, the distribution for x(s + t)− x(s) is a function of “how long” or t,
not “when” or s.

A stochastic process that possesses both stationary increments and inde-
pendent increments is said to have stationary independent increments.
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analysis of this time-varying delay has been studied in
more details in this section.

A2) For the ith propagation path, we associate ΘB
i

and ΘM
i as propagation directions, a complex gain

caused by the antenna propagation patterns (APP)s
GB

p (ΘB
i ;ω)GM

m (ΘM
i ;ω), a time-varying delay τp,m;i(t),

a path attenuation gain gp,m;i ≈ gi, and a path phase
shift φi. The space-time-frequency (STF) channel trans-
fer function (CTF) between the BS antenna at aB

p and
the MS antenna located at aM

m is represented as follows:

hpm(t, ω) ∆=
I∑

i=1

{
GB

p (ΘB
i ;ω)GM

m (ΘM
i ; ω)

× gi exp (jφi − jωτp,m;i(t))
}

. (1)

A3) The propagation delay over the ith path is time-varying
due to displacements of the ith scatterer from its initial
position, as well as movements of the MS, as follows:

τp,m;i(t)
∆= τp,m;i(0) +

1
c

(
XS

i (t) + vt
)T

ΘM
i , (2)

where (.)T represents the Transpose operation.
A4) At time zero, we decompose the propagation delay of

the ith path, τp,m;i(0), into three components: one major
distance delay and two relative propagation delays with
respect to BS and MS local coordinates as follows:

τp,m;i(0) = τi −
(
τB
p;i + τM

m;i

)
, (3a)

τB
p;i

∆=
aB

p
T ΘB

i

c
, τM

m;i
∆=

aM
m

T ΘM
i

c
, (3b)

where τi represents the distance delay between OB and
OM , and τB

p;i and τM
m;i represent relative propagation

delays from antenna elements, aB
p or aM

m , to correspond-
ing coordinates, OB or OM , respectively [8]. The time-
delays τi’s are assumed to be i.i.d. random variables
which are Exponentially distributed. Exponential pdf
is a commonly used distribution for the time-delay in
outdoor environments [9], [10]. The pdf of the time-
delay τ is fτ (x) = 1

σ e−
x−τ+σ

σ , ∀x � τ − σ, where
τ = E[τi] is the mean value used to specify the
initial distance between BS and MS coordinates (major
propagation distance), and σ is the delay spread. The
moment generating function (MGF) of the time-delay is
Φτ (s) = E[esτ ] =

∫ +∞
−∞ esxfτ (x)dx = e(τ−σ)s

1−σs .
A5) The pdf of the propagation directions, fB(ΘB) and

fM (ΘM ) over [−π, π), characterize the non-isotropic
propagation environment around the BS and the MS,
respectively. Since these pdfs are periodic with period
2π, we can represent them by their FSE pairs as follows:

FB
k ←→ fB(ΘB) and FM

k ←→ fM (ΘM ), (4a)

Fk =
1
2π

∫ π

−π

f(Θ)e−jkΘdΘ and f(Θ)=
+∞∑

k=−∞
FkejkΘ.(4b)

Reported measurement results suggest two candidates
for these pdfs, namely truncated-Normal and truncated-
Laplace distributions (see [11] for more investigations).

A6) The APPs of the pth antenna at the BS and the mth
antenna at the MS at frequency ω are taken into account
by GB

p (ΘB ; ω) and GM
m (ΘM ; ω), respectively, where

ΘB ∆= ∠ΘB and ΘM ∆= ∠ΘM are the propagation
directions (DOD or DOA) at the BS and the MS
sides, respectively. Complex APPs, GB

p (ΘB ;ω) and
GM

m (ΘM ; ω), are periodic functions with the period of
2π. Therefore, we represent them by their FSE pairs (see
[11] for the FSE of the APPs of some commonly used
antennas):

GB
k (ω)←→ GB(ΘB ; ω), (5a)

GM
k (ω)←→ GM (ΘM ; ω),

Gk =
1
2π

∫ π

−π

G(Θ)e−jkΘdΘ and G(Θ)=
+∞∑

k=−∞
GkejkΘ.(5b)

A7) Assuming that |τi| � max
{
|τB

p;i|, |τM
m;i|
}

, the path-gain

is given by gi =
√

P
I τi

− η
2 , where η is the pathloss

exponent and P is a constant. Appropriate values for the
pathloss exponent are η = 2 for free space propagation
environments, η = 4 for rural environments and η = 6
for crowded urban environments [12].

A8) As a consequence of the planar wave propagation, the
path phase shift φi accurately approximates φp,m;i. We
take into account the phase contribution of scatterers
by uncorrelated uniformly distributed random phase
changes, i.e. φi ∼ U [−π, π) and E[exp(φi1 − φi2)] =
δ[i1 − i2], where δ[.] is the unit impulse.

Substituting (2) in (1), we get:

hpm(t, ω) ∆=
I∑

i=1

{
GB

p (ΘB
i ; ω)GM

m (ΘM
i ; ω)gi

× ejφi−j ω
c (XS

i (t)+vt)T
ΘM

i −jωτp,m;i(0)
}

. (6)

The frequency shift of the ith received multipath waveforms
(caused by the Doppler effect) is caused by random displace-
ments of the ith scatterer, as well as movements of the MS,
i.e. XS

i (t) and vt, respectively. Apparently if time-variations
are just caused by the scatterers’ displacements, equation (6)
transforms into the conventional linear Doppler caused by
the straight motion (linear speed) of the MS [11]. Random
displacements introduced in this paper are caused by different
changes in the speed and/or the direction of movements of
different scatterers, and have not been studied in a closed-
form in the literature.

III. EFFECT OF SCATTERERS’ RANDOM DISPLACEMENTS

ON THE CCF

In this section we derive the STF-CCF between the CTFs
of two arbitrary MIMO communication links hpm(t1, ω1) and
hqn(t2, ω2), denoted by:

Rpm;qn(t1, t2; ω1, ω2)
∆= E[hpm(t1, ω1) h∗

qn(t2, ω2)], (7)
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Rpm;qn(t1, t2; ω1, ω2) = (8)

E


 I∑

i1,i2=1

GB
p (θB

i1
; ω1)GM

m (θM
i1

; ω1)gp,m;i1e−jω1τp,m;i1 (t1)ej(φi1−φi2 )GB
q (θB

i2
; ω2)GM

n (θM
i2

; ω2)gq,n;i2ejω2τq,n;i2 (t2)


 .

Rpm;qn(t1, t2; ω1, ω2) =
P

I

I∑
i1,i2=1

{
E
[
(τi1τi2 )

−η
2 ej(ω2τi2−ω1τi1 )

]
E

[
GB

p (θB
i1

; ω1)GB
q (θB

i2
; ω2)e

j
(

ω1
c

aB
p

T
ΘB

i1
− ω2

c
aB

q
T
ΘB

i2

)]
(9)

×E
[
ej(φi1−φi2 )

]
E

[
GM

m (θM
i1

; ω1)GM
n (θM

i2
; ω2)e

j
c

(
ω2

(
XS

i2
(t2)+vt2−aM

n

)T
ΘM

i2
−ω1

(
XS

i1
(t1)+vt1−aM

m

)T
ΘM

i1

)] }
.

where (t1, t2) are sampling times, (ω1, ω2) are carrier frequen-
cies and (p, m; q, n) are antenna element indices. By replacing
(6) in (7), we rewrite the CCF as follows: see (8). By re-
grouping dependent and independent random variables in (8),

using the approximation gp,m;i ≈ gi =
√

P
I τi

− η
2 , and using

Assumptions A1-A4, the expression of Rpm;qn(t1, t2; ω1, ω2)
is decomposed as follows: see (9). Based on Assumptions A4
and A8, the first expectation in (9) or E

[
τi

−ηej(ω2−ω1)τi
]

is

calculated as Φ(η)
τ (j(ω2 − ω1)), where Φ(η)

τ
∆= E[τ−ηesτ ] [8,

Appendix I]. In order to calculate the last expectation in (9),
we first perform the expectation on a simplified version of this
expectation and for an arbitrary Wiener displacement process
vector X(t) as follows:

E
[
e

j
c (ω2X(t2)−ω1X(t1)+d)T ΘM

i

]
= (10)

E
[
EX

[
e

j
c (ω2X(t2)−ω1X(t1))

T ΘM
i

]
e

j
c dT ΘM

i

]
,

where EX[.] denotes the expectation with respect to the pdf
of X, E[.] is the expectation with respect to the pdf of
all remaining random variables, and d is an arbitrary 2D
vector. After some manipulations and using the results of [11,
Appendix I], two remaining expectations in (9) are calculated
and led to the formulation of the CCF as follows:

Rpm;qn(t1, t2;ω1, ω2) =
P

I
Φ(η)

τ (j(ω2 − ω1))× (11a)

W
(
dB

p,q,GB
p,k(ω1)⊗ GB

q,−k

∗
(ω2)⊗FB

k

)
×

W
(
dM

m,n,GM
m,k(ω1)⊗ GM

n,−k

∗
(ω2)⊗FM

k

)
×(

I∑
i=1

e−ζi(t2−t1)ω
2
2/2c2

× e−ζit1(ω2−ω1)
2/2c2

)

where Φ(η)
τ (s) ∆= E[τ−ηeτs] is the η-order integration of the

MGF of the delay profile (DP),

W (d,Hk) ∆= 2π
+∞∑

k=−∞
jkejk∠dHkJk(

|d|
c

), (11b)

dB
p,q

∆= ω2aB
q − ω1aB

p , (11c)

dM
m,n

∆= (ω1t1 − ω2t2)v + ω2aM
n − ω1aM

m , (11d)

Jk(z) ∆= j−k

π

∫ π

0
ej(kξ+z cos ξ)dξ is the kth-order Bessel func-

tion of the first kind, |.| denotes Euclidian norm and zn
∆=

xn⊗ yn =
∑+∞

k=−∞ xkyn−k denotes the linear convolution of
two given discrete-time sequences xn and yn.

Remark 1: As it is seen in (11a), the contribution of each
moving scatterer is represented by its corresponding variance
factor ζi; the more the variance factor is, the faster the ith
associated term in the CCF decays. It implies that scatterers
with larger displacements have less effect on the CCF, while
the effect of slowly moving scatterers last longer.

IV. EFFECT OF SCATTERERS’ RANDOM DISPLACEMENTS

ON THE POWER SPECTRAL DENSITY

In this section, we investigate how the scatterers’ random
movements affect the PSD of the channel process. This
analysis is valid for the stationary case of ω1 = ω2 = ω
and m = n = 1. If the scatterers are fixed it can be shown
that the PSD will be [11]:

Rp1,q1(Λ, ω) =
∫ +∞

−∞
e−jΛ∆tRp1,q1(t1, t2;ω, ω)d∆t

= W(dB
p,q,HB

k )
4πc

ω|v|P0

×
+∞∑

k=−∞
ejk∠v(GM

1,k(ω)⊗ GM
1,−k(ω)⊗FM

k )

×
Tk( cΛ

|v|ω )√
1− ( cΛ

|v|ω )2
, |Λ| < ω

c
|v|, (12)

where ∆t = t2− t1. RM (Λ) is defined as the last term in (12)
which represents the impact of non-isotropic environment, the
APP and the direction of the MS speed as follows:

RM (Λ) =
+∞∑

k=−∞
ejk∠v(GM

1,k(ω)⊗ GM
1,−k(ω)⊗FM

k )

×
Tk( cΛ

|v|ω )√
1− ( cΛ

|v|ω )2
, |Λ| < ω

c
|v|, (13)

where Tk(Λ) is the kth order Chebyshev polynomial function
of the first kind. Please note that RM (Λ) represents PSD of
a bandlimited process. To consider the effect of scatterers’
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Fig. 2. PSD for the Laplace and Normal pdf case for fixed scatterers moving
on the x-direction.
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Fig. 3. PSD for the Laplace and Normal pdf case for moving scatterers
moving on the x-direction.

random displacements on the channel PSD, it is easily noted
that RM (Λ) should be modified as in RM

ζ (Λ):

RM
ζ (Λ) = RM (Λ) ∗ 1

I

I∑
i=1

1
jΛ + ζiω2/2c2

. (14)

In figure 2 the PSD is depicted for a microcellular environ-
ment where omnidirectional antenna elements are used and
the scatterers are fixed. To investigate the role of scatterers’
movements, figure 3 depicts the same scenario with non-fixed
scatterers (I = 10 and ζi = 0.05).

It is clearly observed that the movement of scatterers has a
great impact on the channel PSD, and causes the PSD to be
a non-bandlimited process, in contrast to the fixed scatterers
case.

V. CONCLUSIONS

Random movements of scatterers on the azimuth plane
are characterized by two-dimensional independent-increment
stationary-increment Wiener process vectors in terms of the
amplitude and the direction of their speed. The effects of
such movements are investigated on the CCF of a multi-
path Rayleigh fading channel in terms of temporal, frequency,
and spatial correlations. While the non-isotropic scattering
and directional antennas introduce a linear combination of
(first kind) Bessel functions with different orders to repre-
sent spatial-temporal-frequency selectivity aspects of the CCF,
random displacements of the scatterers reshape the CCF in
terms of available coherence bandwidth and coherence time.
The results show that the realistic channel seen by a moving
MS with constant speed and some scatterers with random
displacements in the azimuth plane is far from what is believed
in the conventional literature assuming fixed scatterers and
moving MS. In fact random displacements of the scatterers
(and maybe the MS) are subject to be incorporated in the
resulting CCF. This work successfully takes into account the
random displacements of scatterers (and the MS), while it also
provides a solid platform to compute the CCF in an analytical
form. It also considers the effect of these random movements
on the channel process PSD.
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