2004 IEEE 5th Workshop on Signal Processing Advances in Wireless Communications

MIMO Space-Time Correlation Model for Microcellular Environments

Hamidreza Saligheh Rad and Saeed Gazor
Department of Electrical and Computer Engineering,
Queen’s University, Kingston, Ontario, K7L 3N6, Canada.
Tel: (613) 533-6068, Fax: (613} 533-6615,

Email: radh@ee.queensu.ca

Abstract — 1In this paper we present a comprehensive cross-
correlation model for a Multiple-Input Multiple-Output Rayleigh
fading channel in an Isotropic scattering environment., The scat-
tering environment is assumed to be a microcellular media with
sufficient number of scatterers. This implies uniformly distributed
angle of departure and angle of arrival either at the transmitter or
at the receiver. Simple and reasonable assumptions are made for
various relevant physical parameters, such as exponential or nor-
mal time-delay distribution and uniform phase change in the re-
ceiving waveform. A novel method of modeling is suggested to con-
sider a geometry for the local scatterers, This approach establishes
a mathematical relation between the time-delay and the channel
gain associated to each dominant propagation path, and uses ap-
propriate probability density function (pdf) for the time-delay pro-
file. This flexible method allows us to characterize a wide range
of propagation environments. Cross-correlation function between
channels appears to be a multiplication of tow Bessel functions,
and two other multiplicative terms. Bessel functions represent the
Doppler effect, the carrier frequencies, and the spatial separation,
either at the transmitter or at the receiver. The effect of the car-
rier frequencies also appears on the other terms. Interestingly, the
last two terms are 5/2-order derivative of the moment generating
function of the delay profile at two carrier frequencies, respectively,
where 7 is the environment pathloss exponent. Overall, the model
has a closed ferm and is a generalizatien of the Clark model.

L. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) communication systems hold
considerable promise for providing high daz rates [1]. To design a
real MIMO wireless system, and 10 predict its performance, it is nec-
essary to have accurate MIMO wireless channel models. Hence, sim-
ple and retiable models for the underlying MIMO channels are neces-
sary to analyze the impact of the random multipath fading channel on
the performance of ST solutions [2]). Statistical behavior of the time-
varying Channel Impulse Response (CIR) is a key method to character-
ize MIMO communication systems [1-5,7]. On the other hand, in most
environments the communication channel response is the superposition
of responses of a large number of propagation paths. This fact, along
with the central limit theorem, suggests an asympiotically zero-mean
Gaussian random process for the channel; therefore, such a random
process is often characterized by its second-order statistics, i.e., cross-
correlation function [16]. In this paper a physical medel is presented
based on the calculation of these statistics.

Some interesting physical models based on cross-correlation func-
tion are discussed in the literature [1-4]. The one-ring model first
employed by Jakes |13] is extended in [1] for MIMO channels. This
extended model is appropriate in the urban macrocell environments,
where the BS is elevated and seldom obstructed. In [4], another ex-
tension of the traditional Clarks/Jakes’ model (see {!5} and [7]) is pro-
posed for frequency flat fading process it a land macrocell mobile ra-
dio environment. This work develops a ST correlation function using a
ring of scatterers around the mobile unit. Abdi and Kaveh in (2] pro-
pose a ST cross-correlation function for a MIMO frequency nonselec-
tive Ricean fading channel, assuming a one-ring of scatterers around the
Mobile Station (MS). In this model as an example of an outdeor macro-
cell environment, a nonuniform probability density function (pdf) is
suggested for the Direction Of Arrival (DOA) around the user, mod-
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eled by the von Mises distribution {2]. Kalkan and Clarke suggeste a
model to predict the BS signal statistics in the urban macrocell environ-
ments where there is no scattering around the BS [3]. Using this model,
the correlation for the envelope of channels is derived for the case of
hybrid space-frequency diversity reception. All of mentioned models
consider one-ring of scatterers with different statistical assumptions on
physical parameters.

In this paper we derive a closed-form, easy-to-use, and mathemati-
cally tractable expression for the ST cross-correlation function between
correlated links of a Rayleigh wireless channel with Multiple-Transmit-
Multiple-Receive antennas. A novel method of modeling, called free-
geomelry scatterers, is suggested to consider the spatial distribution for
the local scatterers. This approach establishes a mathematical relation
between the time-varying delay and the correlated channel gain associ-
ated with each dominant propagation path, and uses appropriate statis-
tical distributions for physical parameters such as the time-delay. This
method gives us the Aexibility to characterize different propagation en-
vironments: microcell or macrocell, flat-fading or frequency-selective.
In fact, this delay-gain expression, along with the appropriate statistical
distributions for the time-delay and the angle spread, plays the role of
the geometry of scatterers in the modeling process [51. Each dominant
path is associated with a path gain and a path phase change. The path
gain represents pathloss and fading effects of the propagation waves
along the path. The path phase change represents the contribution of
the path on the phase of the received signal. This simple physical model
considers a homogenous' scattering environment with a large number
of surrounding local isotropic? scatterers,

Waves propagated in the environment are assumed to be planar. This
assumption is possible because the distance between the BS and the MS
is large enough. The planar wave propagation in a homogenous envi-
ronment is a reciprocal phenomenon; thus, the proposed model can be
used in both uplink and downlink channel modeling. In addition, we
take into account the temporal information of the propagation media,
as well as the effect of the multiple propagation paths. In other word,
this model describes general statistical characteristics of the Rayleigh
channel as a function of space, time, and frequency. Overall, the pro-
posed model is efficient for both analytical analysis and simulations
purposes of MIMO wireless systems [9,10]. An extension of the model
for a three-dimensional (3D) propagation scenario is also given in [6].

The rest of this paper is organized as follows. Notations and as-
sumptions of a MIMO channel mode! for the free-geometry scattering
method are intreduced in Section Il. The new space-time-frequency
cross-correlation function is derived in Section 1Il. Some simulation
results and discussions of the behavior of the model are proposed in
Section IV. The results describe the effect of different assumptions on
the modeling procedure. The discussion elements that occur throughout
this paper are brought together as conctuding remarks in Section V.

I1. MIMQO RAYLEIGH FADING CHANNEL

Figure 1 shows a pair of BS-MS$ antennas from a multielement antenna
system in a two-dimensional (2-D) propagation environment. Threugh-
out this paper, the following notations are used where the superscripts

1By homogenous propagation media, we mein an ¢nvirenment with identical
(harmonizcd) random physicat features in all dircetions in space.

2 An isotropic scatterer is a very small scatierer compared 10 the wavelength
of the carricr frequency. Such a scatterer acts as a point source |81.
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Fig. 1. p*" anicnna of the BS and m'™ ansenna of the MS in their local
coordinaic axis. The time-delay of the ith propagaiing waveform to the MS
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major distance dclay.
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B and M indicate variables at the BS and MS sides respectively:

o BS coordinate,
oM MS coordinate,
W Carrier frequency,

R 1p(t, w) CIR between p' BS and m™ MS antenna elements,

n® Number of BS antenna elements,

nM Number of MS antenna elements,

B, p'!' antenna element on the BS side relative to O,

Mo m*™ antenna element on the MS side relative to O™,

% MS speed vector,

¢ Wave propagation velocity,

[ 14 The unity vector pointing to the Direction of Departure
(DOD) of the i*" dominant path wave from the BS,

eM The unity vector pointing to the DOA of the i*" dominant
path wave from the MS,

I Number of total dominant paths,

Tpmi  Delay between p* BS and '™ MS antenna elements via
#*" dominant path,

Gp.m4  Gain between p*™ BS and m'" MS antenna elements via
the i*® dominant path, approximated by g,

i Phase contribution along the ™' dominant path,

g Uniferm distribution parameter for phase change,

w; Shifted frequency by the Doppler phenomenon for the i*"
dominant path,

3 Fast fading factor for the i*" path,

n Pathloss exponent,

T Variance of the time-delay 7,

¥ Mean of the time-delay ;.

In Figure 1 antenna elements are arbitrarily located at MS and BS,
around their local coordinates. O2 and O*!. All antennas are assumed
to be omnidirectional and are addressed by position vectors with respect
10 their local coordinates. BS and MS have n® and n™ antenna ele-
ments respectively. Each antenna receives the signal through the media
via a large number of propagating paths with uniform DODs and DOAs
over |0, 2m), since the MS and the BS are assumed to have atmost the
same height [13). The distance between MS and BS coordinates is
considerably larger than the space between the antenna elements which
is defined in the mean value of the time-delay distribution. This im-
plies a planar wave propagation environment [13, Page 75). Hence. as
long as there is no scattering on the waveform traveling between two
antenna elements, this is reasonable to assume that DODs and DOAs
are the same for all the antenna elements in the corresponding station”,
Overall. the propagation media is considered 1o be a rich scattering mi-
crocellular environment. We assume that there is no LOS which can
be treated as one of these propagation paths and can be deterministi-
cally modeled [2]. Notations ©7 and @2 represent DOD and DOA
unity vectors of the i*" path a1 BS and MS respectively (see Figure 1).
The vector V' represents the MS mobility on a horizental plane. This

3Planar wave propagation in a homogenous environment is a reciprocal phe-
nomenon |18),

assumption is made to characterize the time selectivity (temporal varia-
tion behavior) or the “time coherence” of the channel [13, Page 30-32].

A solution basis for Maxwell’s equatiens is to break down the re-
ceived waveform into a linear combination of an appropriate set of
elementary functions [13], e.g., the set of plane waves [13,17]. Pla-
nar waves emitted from the array efement B;, travel over several prop-
agation paths with different lengths. We assume that the waves are
scattered in the propagation media and reach the MS via a number of
dominant paths from different directions. The following expression de-
scribes the CIR of such a propagation scenario,

I
1 . . .
hmp(t, LU) = ﬁ Z gp.m:i €XP (]éi + Jwit — Jpr,m:i) N (€D)]
=1

where [ is the number of dominant paths resulting from scattering.
Tp,mai is the real time-delay over i*" path. and gp,yy..; is the real gain of
the " dominant path between By, and Ma,,. The gain, gp.m::. is a func-

tion of the time-delay and the fast fading factor [2,5]. The frequency of
T 0
the i*" received waveform is denoted by t; 2o+ l—gi—), where

w is the carrier frequency and (V—T?ﬂ) is the Doppler spread factor.
Notation ¢; denotes the phase change of the signal along the i*" path.
The term 1/+/7T is introduced to avoid any divergence in the summa-
tion by retaining a constant energy random process, i.e., 10 guarantee

—15~J
I7V S Elgd) — las I — oo [16].
In this paper, we make the following statistical assumptions:

A1) Satistical distribution of DODs and DOAs are all uniform. This
is possible by the assumption of a homogenous rich scattering
environment with a planar wave propagation between BS and
MS {13]. In addition, we assume that DOAs and DODs are in-
dependent from each other and from time-delays, T, m. {1-4).
In this model the phase contribution of surrounding scatterers
are taken into account by a random phase change parameter, ¢;.
This random phase plays a significant role in the resulting model.
In order to consider different types of scatterers, we model the
phase change by a uniform pdf with an adjusting parameter as:
Pps(@) ~ U)0,28); 0 £ 6 < =, where @ is called the soft-
ness factor of the environment. This parameter characterizes the
effect of the environment on the phase change; e.g., a hard scat-
terer has no contribution on the phase of the reflecting waveform,
while a soft scatterer introduces a phase change. More specifi-
cally, two special extreme cases are:

A2a. Hard envirenment 6 = 0: The phase change is considered
to be zero, i.e., all reflecting scatterers are assumed to be
hard [8].

A2b. pg(p) ~ U|0,2x): In this case, random variations of the
phase change is at the maximum. This distribution is suit-
able for those environments in which a typical radio wave
travels long distances, usually the distance of hundreds or
thousands of wavelengths, and hits so many scatterers be-
fore reaching the receiver [13].

Obviously, one can assume more realistic, but more com-
plex phase models {11].

We decempese the ith path propagation delay, Tp,i,;:. into three
components: one major distance delay, and two relative propa-
gation delays with respect to local coordinates across BS and MS
antenna arrays. This can be written in the following form:

A2

~

A3

—~

Tp.m;t = Ti— (Tjﬁf + Trﬁ[;'i)a (23)
By of

B 2 ~E (2b)
MEaM

ity & MaBL (20)

where T; represents distance delay between O® and OM, and

T;,g;{ and 727, represent relative propagation delays from antenna
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elements, By or M, to corresponding coordinates, O or O
respectively [5]. We consider two common distributions for dis-
tance delays, i, in order to be able to compare their effect on
the model. In one case, time-delays are assumed to be indepen-
dent identicalty disaributed (i.i.d.) Gaussian random variables,

i ~ N(T,o) = %l—e';—o%. The second case, as is used
T

in [3], assumes i.i.d. Exponential distributions for time-delays,
7i. For the sake of comparison, the distribution of the exponen-
tia) case is considered to be 7y ~ %e‘r Che VT 2T —0.
In both cases, the average time-delay, 7, is related to the prop-
agation distance and ¢ is the variance of the propagation delay.
The moment generating functions for these two cases are given
respectively by [16, page 153):

Nomal: @&.(s) = grorette (3a)
al: @ it 3b
Exponential: (s) = T=os (3b)

A4) Path gain, gp, i, and propagation delay, 7y.m.;, are two random
parameters as functions of path length; therefore, they are depen-
dent. The following relation, which is justified by experimental

measurements [151, is used to describe this interaction {5]:

gp.m;i é ﬁi A" P(Tp.m:!)) (4)

where (7p m.:) is the average pathloss power, and 3; is called
the fast fading factor [17.18]. The fast fading factor is assumed to
be stationary, independent of the time-delay, 75 m.4, and a time-
invariant random process for a stationary time-varying channel.
The effect of slow fading is also taken into account in the log-
normal component [17]. By experimental measuresnents, it has
been found that the dependency of the pathloss on the time-delay,
Tp.m-i» I8 Characterized by [14]

Tp.m:i

P(Tp-m:i) = ( E=

)n PO: (5)
where, 77 is called pathloss exponent, and P, is a constant.
Depending on the characteristics of the propagation media,
the pathloss exponent is usually measured between 2 and 6
[5. 14].  From (5), (2a) and the obvious fact that |7:| >
max {|7|, |7m':|}. we approximate P(Tpm.) = P(r) for
all BS and MS antennas as:

Ti

ooz = g5 = i ( )% VPs. 6)

7
A5) Itis assumed that random phase change, ¢;, is independent irom
channel gain, time-delay, and fast fading factor, ;.

I11. A NEW SPACE-TIME CR0OS5-CORRELATION FUNCTION

Using established assumptions in the previous section, we derive
a closed-form expression fer the ST cross-comrelation function be-
tween the CIRs of two arbitrary communication links, Amp{t1,w1) and
hng(tz,w2). This correlation function is denoted by,

Ronpna(ts, tz;wn,we) 2 Elhmp(ts, w1) hagltz,wa)], (1)

and is a function of sampling times (f1,t2), carrier frequencies
(w1,wz), and antenna elements (m, p;n, ¢). This second-order statis-
tics provides essential information for the random process describing
the propagation behavior of the MIMO communication channel.

By replacing (1) and (2) in (7), the ST correlation function
Rinp.ng(t1, t2;001, w2) is wrirtten as follows:
], (8a)

d

I I
1 . . .
7 Z Z Gp.miiy Gg.ik0 €XPLI{Gi — P N1 T3

iy =1ig=1

where,

alef +ul ol
boi b1 —i e T imTe

¥, & giwiti—juilry B \f" (8b)
slel +mTold
. - @ TEp MRy

Ty & iwigta—jwalmy, < ), 8c)

a vTal A vTaM )
and @;; = wi{l + — %) and @y, = w2(l + —2). Relative

Jocation of the antenna elements on the MS side are assumed to be
constant with respect to each other. This assumption aJso applies for the
BS. The motion of the mobile unit is expressed by the relative motion of
the BS and the MS coordinates. In fact, motion of a MS with a constant
speed results in a Doppler spectrum that is usually modeled by a Bessel
function for the Single-Input Single-Output (SISO) scenario {7]. In
a planar wave propagation environment, we assume that DODs: @g
and ©F, and DOAs: O} and ®7, do not depend on antenna indices.
There is no more scattering when the wave travels between antenna
elements in both MS and BS; therefore, phase changes of dominant
paths correspending to different MIMO channels are equal.

By regrouping dependent and independent random variables in
(8a), using Assumptions Al-4, and doing some manipulations,
Rmpng(ty, t2;u1, w2) is decomposed into four components as follows

1
1Y E[ggme )] B [efea e )y o

1p.ip=1

where

If

d?
d M

|w1Bp — waBgl

[(wits = wat2) V + (@1 Mm — wally) |,

(9b)
9c)
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Jo(z) 2 & foﬂ €’* °S*da, and the amplitude of a complex vector is
denoted by |.|. Parameters d® and ™ represent shifted distances at
BS and MS respectively. Greater d® and d* often result in less ST
correlation because of the form of the Bessel function. Parameters 42
and d” contain spatial, temporal, and frequency separation between
h/mp(tl s wl) and hnq(fQ: WZ)-

One should note that correlations appear in a multiplicative form
defined by two Bessel functions. This closed-form is easy to use and
accurate enough for different analytical and simulation purposes [9,10].
In addition, the simplicity of this form is easy to understand. but it is
sufficiently comprehensive to describe the MIMO propagation media
for advanced educational objectives.

Remark 1: In a fixed carrier frequency, w3 = wa, the proposed cross-
correlation function depends on the time difference, t1 —¢2 [7,15]). This
implies that the suggested scenario for MIMO channel modeling offers
a stationary random process in a narrowband communication system.

Replacing (6) in (9a), using Assumption S, and using the moment
generating functions of time-delays, we get

d? - dM . )
Bapng(t1, tz;wr,we) = Jo(—C—)Jo(—;)‘big)(—Jw1}‘P£g}(jwz)

T i
X2 33 Bl Bu] Elexpli(ds, ~ 6],

i1=1ig=1

(10

where @i%’(s) is obtained by (g)‘h-times differentiating the moment
generating function, ®-(s} [16, Page 153]. We assume that 2 is a pos-
itive integer number, otherwise partial differentiating or other methods
are required to evaluate the above expression. The appropriate value
for the pathloss is 7 = 2 for free propagation environments, 7 = 4
for rural environments, and n = 6 for crowded urban environments
[17,18]. In this relation the effect of slow fading is taken into account
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in the log-normal component [17), while the fast fading component for
each path is assumed to be a time-invariant complex random process,
B:. This random process is often considered to be Rayleigh distributed
for wireless applications [17, 18]. Phase changes are assumed to be
i.i.d. unifor random processes (see Assumption A2); therefore,

. _ 1 iy = ig,
Elexp(j(¢s, — i)l = { B, (7)®,,(~i) @ # iz, (11a)
wherethe moment generating function of the phase change is,
esﬁ‘ _ efsa
. = 11
Poi(s) 3e6 (11b)
Substituting (11) in (10), for Rmp.nq{t1, t2; w1, wz), we get
dB d]\{ N ) .
Jo('c—)Jo[—cf)‘b(T?)(fjwl)(bsfg)(ng) (12)

> ElBuBa)

iy.iz=1
f1#12

Pa ! 2 sin @ 2
x S ;mn( )

Remark 2: Only the last term in (12) depends on the fast fading
gains 3; and softness facter 9. This term is also independent of
t1,t2,w; and wz. Therefore, the shape of the correlation function,

Rinp.nglty doiwyws) . . . .
np.ng a )
R w18 independent of the fast fading gains B, soft

ness factor 8, and P,. The effect of all these parameters appears as a
constant power gain.

Remark 3: The second line in (12) represents a constant gain in the
channel model and also represents the effect of fast fading factors, G;,
softness factor, @, and Fo. As all {%:}]_, are positive real numbers,
it is seen that this term takes its maximum at § = 0; therefore, a
hard environment produces the maximum correlation in the commu-
nication. This constant gain, which plays an important role in the com-
munication performance, is determined by following limited statistics:
6.y, EIB2),E||Y, B:)°), P, and I. Fast fading factors, 3;, are often
assumed to be Rayleigh distributed [18]. and can be appreximated by
some simplifying assumptions based on the physical characteristics of
the propagation media [2,5].

In Assumptien A3 we consider two distributiens for the delay profile,
i.e., exponential distribution and normal distribution. Differentiating
the mement generating functions (3a) of these distributions (2)-times

2 . - .
with respect to s results in <I>£-2 ]{s) for exponential and normal distri-
butions respectively, as follews:

(@) or — o)

3(T—0o) 13
S G aseg 32
eﬁ"'sz”gﬂ(?-% so”), if n=2,
=1 .2 .2
e (T4 s0?)? +07), if =4, (13b)
et/ (7 + 56°)° + 307 (F +s2%)), if n=6

n
Using (13) and from (12), &2 (—juwn )@ (juwn) is calculated for
exponential and normal distributions.
Remark 4: The dependency of Rmp ng(t1,t2;w1,w2) en the carrier
n a
frequencies, w1, w2 via d%, d™ or 42 (—jw1}®L2 (jun), shows
that the correlation decreases when these frequencies or their differ-

ences, increase. This result is consistent with some other literature pro-
posed for some different propagation environments [4].

IV. NUMERICAL ILLUSTRATIONS
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Fig. 2. Spatial-Frequency selectivity: Cross-correlation function with respect

to the antenna spacing for different frequency offsets, A f = Sfo — f1: Using
Exponential delay profile with mean, 7 = 2usce, and variance, ¢ = 100psec,
the mobile speed, V' = 50K, t; = t2 = 0, pathloss exponent. n = 2,
Mm = 2(1 — j)em. My = (1 + j)em. Bp = kX1/2, By = Ocm, where
k€ [0,4]: a) f1 = 4GHz.b) fi = 8GHz
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4 1{o1e) 30 4 Anteona Spacing (x A 12) Atlmec)

(a) t; = Osec

30 4 AnlconaSpacing {x 3.].'1]

(b) ¢, = 100msec

FFig. 3. Spatial-Temporal selectivity; Non-Stationary case: Cross-comrelation
function with respect to antenna spacing for different time offsets, At = ta—t1,
Using expenential delay profile with mean, 7 = 2puscc. and variance, o =
100psec. the mebile speed, V' = SOKmM, f1 = 1, f2 = 2GHz. pathloss
cxponent. 77 = 2, Mm = 2(1 — j)em, Mn = (1 + jlem, By = kA1/2,
By = Ocm, where k € [0,4]): a) £; = Oscc, b) 23 = 100msec.

In what follows, we use the exponential distribution with a constant
mean, T = 2usec, and variance, ¢ = 100psec [12, 18]. This prafile is
selected because it is the most commeon one used in the literature.

. . . R, (ty . dow1-wa)
_ np.n 1:827w] WD
In Figure 2 normalized cross-correlation, '_u——ﬂmp.mp{n.h:u: o) are

plotted as a function of the MS antenna spacing and carrier frequency
offsets, Af 2 f2 — f1, where w; = 2xf; and fi is constant either at
4GHz or at 8GHz. From this figure, it is apparent that the correlation
decreases as the difference of carrier frequencies, A f. increases. This
decrease results from the form of the Bessel functions and the term
produced from the delay profile moment. We note that (9) represents a
non-stationary random process if the carrier frequencies are not equal.

Figure 3 shows joint spatial-temporal selectivity, i.e., the cross-
correlation is depicted as a function of At = t5 — t1, where t; and
carrier frequencies, fi =1GHz and f2 =2GHz are constant. Compar-
ing Figures 3a and 3b, we observe the non-stationary behavior of the
MIMO channel. These figures also reveal the fact that the correlation
decreases as the antenna spacing increases. In the particular case in
which carvier frequencies are equal, the correlation function represents
an stationary random process; only a function of the time difference
t1 — t2. This result is in agreement with other results available for
stationary models in the literature [1-5].

Figure 4 illustrates the two dimensional spatial selectivity, i.e., the
correlation function is plotted as a function of variations of antenna
spacing both at the BS and the MS. In this figure we observe the ef-
fect of oscillations of Bessel functions in both dimensions. Comparing
Figures 4a and 4b shows the non-stationary effect of the time index.

Here we investigate the effect of different scattering environments:
free space, rural, and crowded urban propagation environments that are
characterized by = 2,4 and 6 [18), respectively. Results are depicted
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(a) ty = Osec
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Fig. 4. Spatial selectivity: Cross-correlation function with respect 10 antenna
spacing on both BS and MS for different time index, t2, when t1 = Osec, Using
expencntial delay profile with mean, ¥ = 2uscc. and variance, o = 100psce,
the mobile specd, V' = 50Km/h, f1 = fa = 1GHz, pathloss exponent. n = 2,
Mm = R1)1/2, My = (1 + jlem, By = k2A1/2, By = Qcm. where
ki € [0,2] and k2 € [0, 4} a) 2 = Osce, b) ¢z = 10mscc.

in Figure 5 for two before-mentioned time-delay profiles. A strong rela-
tion between the pathloss and the excess delay spread is reported in the
literature [12, 18]; therefore, the amount of the time-delay variance in
this figure is appropriately adjusted for each new prepagation environ-
ment, This figure shows that the model introduces less communication
gain when the scattering phenomenon in the environment produces a
wider range of time-delay values. The exponential delay distribution
provides stronger communication links rather than the normal delay
profile. For a given delay profile, the pathloss exponent (i.e., the type
of environment) has a major impact on the gain of the communication
link, but not very much on the shape of the correlation function. Fig-
ure 5 also reveals that the exponential distribution shows more realistic
characteristics for being used in wireless MIMO models.

V. CONCLUSIONS

In this paper, we have proposed a simple, clesed-form. and tractable
expression for the cross-correlation function of a MIMO channel in an
isotrepic scattering environment as an extension of the Jakes/Clarke
model. Using the novel suggested method of modeling, called free-
geometry scatterers, we showed that we are able to consider the appro-
priate spatial distribution for the local scaticrers. As an exampie in this
paper, we considered uniformly distributed scatterers around the MS
and the BS. Hence, this method gives us the flexibility 1o characterize
different propagation environments: microcell or macrocell, flat-fading
or frequency-selective. In fact, this delay-gain expression, along with
the appropriate statistical distributions for the time-delay and the an-
gle spread, plays the role of the geometry of scatterers in the modeling
procedure. The correlation function is decomposed into two Bessel
functions and other multiplicative terms. Bessel functions represent the
Dappler effect, the carrier frequencies and the spatial separation either
at the transmitter or at the receiver. The effect of the carrier frequencies
also appears on the other terms. The third and forth terms are 7/2-
order derivative of the moment generating function of the delay profile
of the propagating waves evaluated at two carrier frequencies, where 7
is the environment pathloss exponent. Overall, the model, which is a
function of time, space, and frequency, is efficient and accurate for both
analytical analysis and simulation purposes. This closed form can be
used eftectively for simulation, analysis, and design of communication
systerns over complex MIMO propagation media. This model is easy
to understand and could be used for advanced educational objectives.
A 3-D extension of this model is presented in [ 6], employing a realistic
elevation angle distribution,
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