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Abstract- In this paper, a receiver for a Dual Transmit Di- 
versity system is designed that takes into account the chan- 
nel estimation error, assuming the unknown channel to have 
a given complex bivariate Gaussian probability density func- 
tion (pdf) (i.e., a Ricean pdf). This criterion of the receiver, 
which is based on the Maximum A Posteriori (MAP), is 
expressed in a quadratic form, and in extreme cases, rep- 
resents either a linear detector or a non-coherent-non-linear 
detector. Simulations of the Symbol Error Probability (SEP) 
of the receiver and analysis of an Upper Bound (UB) and 
a Lower Bound (LB) confirm that the proposed detector 
achieves robust performance against channel imperfections. 

I. INTRODUCTION 

To improve data communication quality (e.g., by reducing 
the effective error rate) in a multipath fading environment, 
i t  is crucial to successfully reduce the effect of fading at 
both the mobile units and the base stations. In most scatter- 
ing environments, antenna diversity is a practical and effi- 
cient technique for reducing the effect of multipath fading 
[ I ] .  These schemes employ pre-coding, namely’Space-Time 
Coding (STC), which is appropriate for multiple transmit 
antenna systems. STC leads to a considerable increase in 
bandwidth efficiency and system capacity [2]. 

Although it has been proved in [5J that in the presence 
of small errors in  the channel state information, STCs still 
result in an improved bandwidth efficiency over classical 
transmitting schemes, a considerable degradation is observed 
when the channel estimation error increases. This could be 
improved by sending more pilot symbols (training symbols) 
during the transmission at the cost of losing some band- 
width efficiency, especially in the case of fast time-varying 
channels [2,5]. Hence, robust detection for these methods 
is needed for good operation when the Channel State Infor- 
mation (CSI) is not exactly known. 

In this paper we derive a new MAP data detection algo- 
rithm that takes into account the channel estimation errors. 
In the proposed method, the channel error is assumed to 
be a complex Gaussian random vector with a known mean 
(based on a previous estimate [91, a guess; or initialized at 
zero) and a covariance matrix (as a measure of the deviation 

from the estimated value). Here, for simplicity, we con- 
sider a system with two transmit antennas and one receive 
antenna as in [I]. The results can be extended to a general 
case of multiple transmitters and multiple receivers. 

The paper is organized as follows: In Section I1 the sys- 
tem and receiver structure are provided. In Section 11-A, 
we also simplify the receiver for an important and simple 
case. In section 11-B the performance of the receiver. i.e., 
the Symbol Error Probability (SEP), is analyzed for a simple 
case by simulations and by derivation of an Upper Bound 
(UB) and a Lower Bound (LB). Finally, some concluding 
remarks are discussed in Section 111. 
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11. SYSTEM MODEL AND RECEIVER STRUCTURE 

For simplicity in this paper, the Dual Transmit Diversity 
(DTD) technique is considered that is proposed by Alamouti 
[ I ] .  This scheme can be described as follows: 

where for i = 1 , 2 ,  the vectors T< E CL, and ni E C L  
are the received signals and the Additive White Gaussian 
Noise (AWGN), respectively. Transmitted symbols, si and 
s2 bothtaketheirvaluesrandomlyfromC = {ci  E CL},=i, 
where K is the number of constellation points and L is 
the dimension of the transmitted signal space. The chan- 
nel gains hl and hz are complex random variables. The 
notations (.)*, (.)T and (.)* stand for complex conjugate, 
transposition and Hermitian, respectively. 

Remark I :  It is easy to see that the signal R remains in- 
variant by transforming the quadruplet (sl,sz, hl ,  hz) into 
(ej$sl, e-34s2, e-’4hl, ej*h2). Assuming that elements 
of  this quadruplet are unknown, this property leaves am- 
biguity, which we shall call Phase Ambiguity (PA), in de- 
termination of the phase e34 when only R is observed in 
order to estimate this quadruplet. The PA depends on the 
set of alphabets C. For example, using a 4QAM modula- 
tion scheme, we have e34 E {+l i j } ;  in this case the 
receiver must know &, which is the equivalent of two bits 
or one symbol. To resolve the PA, the direction of one of 
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the components of this quadruplet must he determined. One 
way to resolve the PA is to control the set of alphabets C for 
sI and s2. e.g., using one pair of training symbols. If the 
phase varies slowly enough with time, it can be tracked ac- 
curately after the first initialization [9].  However, a sudden 
rotation of the channel coefficients results in a dual rotation 
of the detected data after that event.' Another alternative to 
overcome the PA is to use differentially coded modulation 
schemes (e.g., see [4] and references therein for more de- 
tails). In these schemes the information is embedded into in 
the transmitted sequence in a such a way that after decoding 
the effect of e34 is cancelled, usually at the expense of about 
3dB noise augmentation. 

The following theorem, which is the basis of the pro- 
p o s e  receiver. assumes a Ricean pdf for the channel N - 
N ( H ,  C) at a particular moment. The noise N is zero- 
mean, white and Gaussian and is assumed to he independent 
of the channel coefficients. In this and the next sections, (.) 
and (.) denote a priori and a posteriori values, respectively. 
The receiver is provided with the receivzd signal R and in- 
accurate a priori channel information H where the matrix 
C represents a priori covariance of the channel errors. 

Theorem I :  If the a priori pdf of the chan_el vector H 
is Gaussian and @ provided with tke mean H and the co- 
variance matrix C, i.e., H - N ( H , C ) ,  and the additive 
noise is a zero-mean white stationary Gaussian vector, i.e., 
N - N(0, u 2 1 2 ~ ) ,  then the optimal receiver should maxi- 
mize the conditional pdf of the received vector signal given 

- 
I 

le e x p ( - B  
by f (Rls )  = ,?,,,, IEl where 

- - - 1 
E-' = -SHS + C-1 = a12 + E-', 
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(2a) 
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U 2  

B = - H  C H + - R H R + H H Z - ' S ,  (2b) 

ii = i?+ U2 ( R -  Si?), (2c) 

where a & l l a I I I z + l l s Z l l z  ~ IsI 
0 2  

and /AI stands for the magni- 
tude of the determinant of the matrix A (or for ,/- 
if A is not a square matrix) and Il.Il is the Euclidian distance. 
Furthermore, if S is the true transmitted value or if the er- 
ror probability is small enough, then the a posteriori pdf of 
the channel after_observation of R and detection of S is also 
Gaussian, with H as its m e a n p c w i t h  C as its covariance 
matrix, i.e., f ( N I R :  S )  = N ( N ,  C). For proof See [9]. H 

Remark 2: Since the a posteriori and the a priori pdfs 
of the channel have a same form, the assumption of this 
theorem is justified if an iterative channel estimation is em- 
ployed. 

By virtue of this theorem, an optimal receiver can maxi- 
mize the log-likelihood function, i.e., log ( f ( R \ S ) ) ,  as the 
decision rule; therefore, the following metric M(Cp,q ,  R) 

^ ^  
I 

yM(cp,q, R) = log le1 + HHE-'d 
Fig. 2. The Structure of the MAP metric cal~ulato~ for an unknown chm- 
ne1 H with a given Gaussian pdf N ( R ,  E). 

should be maximized, - 
S = arg max A!f(Cp,q:R) (3) 

c,,c,tc 

A where M(CP,,, R) = log 151 + NHC-'I? and Cp,q = 

[ -2 z: 1. The block diagram of this receiver in Fig- 

ure 1 shows how the receiver uses some statistical informa- 
tion about the channel and the noise. Figure 2 shows the 
details of the metric calculator in the receiver. It demon- 
strates that each path in the receiver is simple as to the 
computational complexity, and its digital implementation 
is both feasible and cheap. In this paper, we consider 

E 5 q2 [ ;* f ] as the error covariance matrix of the 

channel vector. This assumption results in 

^ ^  

where p 4, F~ and p are the variance and the corre- l - lp l  
lat iotof the a priori channel estimation error, respectively, 

Remark 3: The value C, that represents the a posteriori 
covariance of the channel coefficients when th_e error prob- 
ability is very small, satisfies Coi(HIR, S = S) = C < C. 

and IC1 = (.+a)~-b2lplp'_ 
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Theorem 1 and this inequality show that I? can be consid- 
ered as the a posteriori estimate of the channel when t@ 
Symbol Error Probability (SEP) is low. This implies that H 
can be used as the output of an iterative algorithm to esti- 
mate the channel coefficients. See [LO) for more details. 

Remark 4: We can see that if C -t 0, i.e.. when the 
channel is known and the additive noise is white and Gaus- 
sian, then the receiver simplifies to a linear receiver as pro- 
posed in [ l ] .  

A. Simplified Receiver Slructure 
In this section, the receiver can be simplified for the spe- 

cial case where )lsl/l* + l ls2/ I2  = IS] is taken to be con- 
stant at the transmitter. This constraint means that the total 
energy used for transmission of one pair of symbols, SI and 
s2, is constant. This condition is less strict compared to 
the case of equal energy signals. can be seen from The- 
orem 1 that this constraint makes C independent of SI and 
s2: therefore, the first term of the metric M in (3) plays no 
role in optimization, and the simplified metric U t C H o  is 
to be maximized. The receiver strncture in this case will 
he the same_as depicted in Figure 1, except for the calcula- 
tion of log IC/ that is no longer required. So, imposing such 
a simple constraint on the energy of signals the transmitter 
results in a more computationally efficient receiver. 

B. Symbol Error Probability (SEP) 
In the following theorem, an upper bound (UB) and a 

lower bound (LB) are given for the SEP of the above simpli- 
fied receiver, when p = 0. The exact SEP is then evaluated 
by simulations and is corppared with the UB and the LB as 
a function of q2,pand \\HI\. 

Theorem 2: For a 4QAM modulation scheme and the case 
of p = 0, the SEP is bounded as follows (See 191 for proof): 

, 
In this theorem, when Cl,l is transmitted, d(Cp,q,Cl,l) 
measures an approximate distance between the transmitted 
symbol, C I , ~  and a tentative detection outcome, Cp,q .  And 
uf is the equivalent noise variance. This equivalent noise 
variance includes the effects of both additive noise and chan- 
nel uncertainties. For example, if the channel is exactly 
known, i.e., ? = 0, the function d(Cp,q,Cl , l )  becomes 
the Euclidian distance for the received constellations and 
uf = U' represents the variance of the additive noise. 

-10 0 10 20 30 
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Fig. 3 .  The experimental SEP evaluation and the error bounds (5) for 
a 4QAM modulation for different values of the variance of the channel 
estimation error. ?, when = [l; 1). 
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Fig. 4. The effect of qZ on the SEP far different SNRs, when R = [l; 1) 
and p = 0; Solid: SNR = -IOdB; Dotted SNR = OdB; Dashed SNR = 
IOdB; Dashed-Dolled: SNR = 20dB. This also shows Ihe effect of p on 
SEP, when cz = 0 .12  and d = [I; 1); Dashed: SNR = -5dB: Dashed- 
Dotted: SNR = 5dB: Dotted: SNR = 15dB; Solid SNR = 25dB [small 
picture). 

The function d(C,,,, C ~ J )  is a non-negative quadratic 
form of the apriori channel estimate @ (because the matrix 
Re{(C1,1- Cp,y)HC1;l} is non-negative and 2 0). 
i.e., it represents an energy-type function of the known pans 
of the channel. This simplification means that the SEP re- 
duces when the energy of the known parts of the channel 
increases or when the energy of the unknown pans reduces. 

As the channel variation is modeled by a Gaussian pdf, 
provided that S = C1,l, R is the summation of two inde- 
pendent Gaussjan vectors and therefore is Gaussianyith a 
meanof C1,1Handacovanancematrixu*I?+C1,1CC~~. 
This covariance matrix includes the uncertainties caused by 
both channel imperfections and additive noise. To achieve 
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a better understanding of the SEP and the above hounds, 
simulation results are illustrated in Figures 3 and 4, and the 
effects of different parameters are discussed in the following 
cases: 

. 
c_' --t 0: In this case, the channel is known, i.e., H = 
H and the SEP hounds become identical with those of 
a known channel with AWGN, as.expected (See Fig- 
ure 3). 
q2 - m: This condition implies that no a priori infor- 
mation is provided about the channel coefficients, and 
the receiver detects randomly. This shows that either 
an initialization is required or a small subset of con- 
stellation points could he used to allow channel identi- 
fication (See Figure 3). 
The SEP has a floor which is a function of <*, because 
when the channel uncertainties diminish, the effect of 
the additive noise becomes dominant at certain points, 
as is evident in Figure 3. In other words, in low SNRs 
the additive noise limits the system performance, while 
in high SNRs the channel uncertainties mainly limit 
the performance (SNRa w). Therefore, it 
is very important to use efficient channel estimators. 
Figure 4 depicts the effect of the channel estimation 
error, c*, on the SEP. It also verifies that the effect of 
qz is considerable in high SNRs while its effect is ne- 
glectable in low SNRs. This figure also shows that p 
has a minor effect on SEP. To study the variation modes 
of U:, which reflects the effect of additive noise and 
channel uncertainties, we consider the eigenvalues of 
C ,  as follows: 

X1,z = 2 + c2ISI (1 f IPI) (6) 

Looking at the larger eigenvalue, we see the effect of 
uncertainties in the worst case. Variations of XI,* in 
the worst case of lpI = 1 show that the eigenvalues lie 
between 0' and 0' + 2<* 1SI. This intuitively means 
that the additive noise is dominant in small SNRs and 
the channel uncertainties are dominant in large SNRs. 
H + 0: This condition implies a Rayleigh fading 
channel. For a QAM scheme, the detection perfor- 
mance of the receiver will be very poor. In this case for 
an orthogonal'modulation scheme, i.e., cFcq = hP,* 
as in FSK, this receiver simplifies to a kind of non- 
coherent receiver. This case is formulated and studied 
in [SI. The system is not bandwidth-efficient in this 
scheme. However, this scheme (which involves reduc- 
ing the size.of the set of the alphabets) could be used 
as an important altemative to the training mode, allow- 
ing lower data rate communication during the training 
mode. 
I IHI I i m: This condition implies a.very strong Line 
of Sight (LOS) gain in the transmission. In this case, 
the bounds converge to zero and hence P, + 0, as is 

obviously expected. 
If llNll increases, the SEP reduces and the error floor 
of SEP occurs 2 t  higher SNRs. The bounds are also 
tighter when IlHIl is higher. 
Figure 4 also illustrates the effect of the correlation 
between the channel estimate coefficients, p. on the 
SEP. It is observed that in low SNRs, the SEP does 
not depend on p. This is easily justified in this case 
by considering (6) as XI,* N U* (See Figure 4 for 
SNR<OdB). In high SNRs, from (6) it is observed that 
Xi,2 E q21S1 (1 f IpI). Inthiscase, theSEPboundsdo 
not vary greatly with variations of SNR (See Figure 4 
for SNR>l5dB). In this case, the SEP is determined 
by the channel uncertainties that are characterized by 
XI,* and the average effect of p is less than the impact 
of 3dB variations of q2. 

111. CONCLUSIONS 

In this paper an optimal MAP receiver for Transmission 
Diversity is proposed that takes channel uncertainties into 
account. The channel estimation error is assumed to he 
Gaussian. The performance of this detection algorithm is 
analyzed using hounds of Symbol Error Probability. Both 
the SEP curves obtained by simulations and the hounds indi- 
cate that the proposed algorithm is robust and simple. Such 
a receiver results in a considerable performance improve- 
ment in the presence of channel imperfections and is very 
suitable for use in fast fading environments in combination 
with an adaptive channel tracking algorithm [9,101. 
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