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ABSTRACT 

Spatially-varying intensity inhomogeneity is a severe 
artifact, which occurs in intra-operative MR images of 
the brain. This artifact causes implications in the 
accuracy of image guided navigation systems being 
performed during neurosurgery procedures. Therefore, it 
is highly desirable to correct intensity inhomogeneity 
along with registration process to achieve an efficient 
and adaptive method to the image guided surgery 
constraints. In this paper, a modified Residual 
Complexity similarity measure is used to correct this 
artifact with the registration of pre- and intra-operative 
images. The results show that this similarity measure 
outperforms some well-known similarity measures such 
as NMI and SSD in registration of pre- and intra-
operative images of the brain, by 31.5%. 
 
KEYWORDS: intensity inhomogeneity; non-rigid image 
registration; similarity measure; residual complexity. 

1. INTRODUCTION 

 
Image intensity variation occurs in Magnetic Resonance 
Imaging (MRI) as a result of multiple factors such as 
radio-frequency (RF) coil non-uniformities, static field 
inhomogeneity and patient anatomy and position. The 
intensity inhomogeneity is a substantial artifact in real 
MR data and varies spatially in the image domain, due to 
inhomogeneities of B0 and B1 fields [1]. The 
inhomogeneity of the magnetic field is more significant 
in open-bore low field MRI systems with respect to 
conventional closed-bore systems [2]. In addition, by 
using surface coil detectors instead of head coils, the 
image intensity is brighter near the coils than deeper in 
the brain. As a result, surface coil detectors have 

inherently inhomogeneous reception profile, which leads 
to slowly varying intensity variations throughout the 
image [3]. The most commonly used intra-operative MRI 
systems during image guided neurosurgeries are low-field 
open-bore systems using surface coil detectors [4]. 
Therefore, this artifact may severely challenge intensity 
based image processing algorithms such as segmentation 
and registration used in image guided neurosurgeries. 

One of the key steps in image guided neurosurgery 
with intra-operative MR imaging is the registration of 
pre- and intra-operative images. Several non-rigid 
registration methods have been proposed, including 
biomechanical models [5-6] or image-based methods [7-
8], in which the focus has been on the type of 
transformation used. However, the selection of proper 
non-rigid registration technique requires considering the 
constraints of intra-operative imaging such as spatially-
varying intensity distortions, which affects finding 
correspondences between images. In fact, one of the main 
components of image registration is the selection of an 
appropriate similarity measure, which is optimized in the 
correct alignment of the two images. 

Regardless of the type of transformation used for 
registration of pre- and intra-operative MR images of the 
brain, there have been some  similarity measures such as 
Sum of Squared Distances (SSD) [5], Normalized Mutual 
Information (NMI) [7] and Cross Correlation (CC) which 
are used extensively in literature. These similarity 
measures consider the correspondences between pixels 
regardless of their spatial dependencies, and are mainly 
based on the assumption that the intensity is spatially 
stationary over the image. However, this is not the case 
where the intensity distortions occur due to field 
inhomogeneity. The intra-operative constraints limit the 
application of time consuming pre-processing techniques 
for eliminating the effects of intensity distortions before 
image registration. Thus, it is highly desirable to use an 
embedded approach to solve both problems of intensity 
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correction and precise registration in a unified 
framework. 

Recently, Myronenko et al proposed a novel 
similarity measure called “Residual Complexity (RC)” 
for registration of images, which are corrupted by 
spatially-varying intensity distortions [9-10]. Their main 
idea was to minimize registration error in the Discrete 
Cosine Transform (DCT) domain rather than in pixel 
domain. Inherited from this idea, we utilized RC to 
perform registration procedure more locally and sparsely 
which is suited for real-time image guided 
neurosurgeries. In this paper, the performance of RC 
similarity measure to correct the intensity inhomogeneity 
occurring in intra-operative images is evaluated and 
compared with three conventional similarity measures. 

In the next section, registration algorithm using RC is 
described. The algorithm is evaluated on synthetic data 
and then tested in registration of pre- and intra-operative 
images of the brain. The results are given in section 3, 
and finally, the discussion on the results is presented in 
section 4.   

2. MATERIALS & METHODS 

As explained before, intra-operative MR images are 
corrupted by spatially-varying intensity distortions as 
shown in Figure 1. 
 

 
(a) (b) 

Figure 1. (a) An example of intra-operative image with 
intensity distortion on its left side; (b) the profile of the 

same image. 

 
As it can be inferred from Figure 1, the profile 

sketched for the brain image has a peak on its right side, 
which corresponds to an intensity peak of tissue signal. 
This peak is due to field inhomogeneity as it is missed out 
on the right side of the image. Figure 2, illustrates the 
same slice from pre-operative scan and its profile, which 
clearly shows both peaks. This image does not contain 
image intensity inhomogeneity throughout its profile. 
This example highlights the necessity of correcting this 
artifact along with registration procedure. 

 

 
(a) (b) 

Figure 2. (a) Pre-operative scans of the same slice in 
Figure 1; (b) the corresponding profile. 

Image registration is composed of three main steps: 
similarity measure, transformation and optimization. This 
paper is focused on the role of the similarity measure to 
be adapted to the registration conditions. The optimum 
value of the similarity between two images can be 
obtained in the correct alignment of both images. 

2.1. Definition of Residual Complexity  

Residual Complexity is defined by eliminating the 
intensity inhomogeneity from the similarity measure 
formulation through solving the registration problem, 
analytically. The correct alignment is achieved where the 
residual of the images to be registered, reaches its 
minimum complexity. RC performs registration and 
intensity correction problems, simultaneously. This is 
done by introducing an intensity correction field that 
aligns the two images. An adaptive regularization term is 
defined for the intensity correction field. The registration 
problem is then solved analytically for intensity 
correction field and the regularization term. This 
procedure is fully explained in [10]. Due to the lack of 
space, only the final formulations are addressed here. 

Consider two images I and J, which are to be aligned 
using the geometric transformation defined by T. The 
energy function of RC similarity measure is defined by: 
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where α is a trade-off parameter and ‘qn’ s are DCT basis 
functions. There are different choices for DCT basis 
functions, which are discriminated from one another 
regarding the choice of boundary conditions. In RC 
formulation, the commonly used form of DCT basis 
functions in image processing, i.e. DCT-II corresponding 
to Neumann midpoint boundary condition, is used for 
representation of ‘qn’s. DCT-II is defined by the 
following formula in 1-D: 
 

    
,

2

112
cos 






 


N

nk

N

w
kq n

n
  (2)

  
 
for k = 1, 2… N, n = 1, 2… N and  










....2,2

,1,1

Nn

n
wn




 (3) 

where N is the size of the block on which the transform is 
performed. 

As it can be seen in the above formulas, smaller DCT 
coefficients are more penalized with respect to the larger 
ones due to the existence of the term log(x2+1). The log 
function decreases rapidly to zero as the number of points 
is increased, causing the DCT coefficients to become 
sparse [9-10]. Therefore, the minimum value of RC 
similarity measure is achieved at the correct alignment of 
the two images, where the residual image can be 
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represented using only a few DCT basis functions. This 
way, the images can be registered optimally even in the 
presence of spatially-varying intensity inhomogeneity. 

2.2. The Algorithm 

Here, the Free Form Deformation (FFD) Bspline 
transformation, which has been applied in registration of 
pre- and intra-operative MR images, is used for modeling 
the deformations of the brain [7]. In the transformation 
selection step of image registration, the goal is to find an 
optimal transformation T: (x,y,z)(x’,y’,z’) that 
corresponds each point in the source image to its 
corresponding point in the reference image. The FFD 
model based on Bsplines deforms the object (here the 
brain) by operating on a mesh of control points. In order 
to define the Bspline-based FFD, we consider the image 
domain as {(x,y)| 0≤x≤N, 0 ≤ y≤M, 0≤z≤M}. The 
nxnynz mesh of control points pi,j,k with uniform 
spacing can be defined on the image domain. The FFD 
can be denoted as 3D tensor product of 1D cubic 
Bsplines: 
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For optimization of the RC cost function, the gradient 
descent method is applied. 

2.3. Dataset 

In registration of pre- and intra- operative images, it is 
essential for the pre-operative (source) image to align the 
brain boundaries to those of the corresponding intra-
operative (reference) image. In order to evaluate the 
performance of the algorithm in registering main features 
of images such as boundaries, which are the key point in 
our application, the algorithm is first applied to circle 
synthetic images. The synthetic reference image is a 
256×256 circle image. This image is deformed using a 
sum of sinusoidal functions to construct the source image. 
The spatially-varying intensity inhomogeneity is 
simulated by adding a mixture of K Gaussian functions 
with standard deviation of 30 to the images as: 
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where Ibefore(x,y) and Iafter(x,y) are the images before and 
after adding intensity inhomogeneity distortions, 

respectively, K is the number of Gaussians, x and y are 
the pixel locations, and μk defines the mean locations of 
the Gaussians. 

Both the source and reference images are distorted 
using the abovementioned intensity distortion with 
different means of Gaussian functions. The corrupted 
reference and source images are illustrated in Figure 3. 
 

 
(a) 

 
(b) 

Figure 3. The reference (a) and source (b) images to be 
registered. 

The algorithm is then tested on the real pre- and intra-
operative MR data. The dataset used for this work are 
adopted from Surgical Planning Laboratory at Harvard 
Medical School website (www.spl.harvard.edu/). The 
images are acquired from patients undergoing tumor 
resection surgeries, acquired on a 1.5T pre- and 0.5T 
intra-operative scanners. The resolutions of the images 
are either 256×256 or 286×286, with either 120 or 90 
slices. The voxel resolution is 0.9×0.9×2.5 mm3.  
     The brain tissue is segmented from the skull in the 
pre- and intra-operative images using 3D Slicer software. 
An example of the pre- and intra-operative MRI images 
of the brain used is shown in Figure 4. 
 

 
(a) 

 
(b) 

Figure 4. An example of (a) pre- and (b) intra- operative 
MR images of the brain before and after opening dura. 
The brain tissue is segmented from skull in the images.  

2.4. Implementation 

The regularization term, which is used as the trade-off 
between the alignment of two images and the smoothness 
of FFD Bspline transformation is set to 0.01 and the value 
of α is selected to be 0.05. The algorithm is performed 
hierarchically in 3 different scales, with 70 iterations and 
grid spacing equal to 5. 

2.5. Evaluation  

2.5.1 Synthetic data 
 
As noted before, it is essential to evaluate the 
performance of the registration algorithm in aligning 
main features like the edges of one image to those of the 
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others. Therefore, a metric, which compares the edges, 
should be selected for evaluation. In order to quantify the 
results, the Baddeley’s Delta image Metric (BDM) [11] is 
used. This metric is used successfully in evaluating 
binary images. Unlike the other metrics, it considers 
spatial information of the pixels and it provides a better 
visual result. This metric can be calculated using the 
following formula: 
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Where Δ indicates the delta metric, w is a convex 
continuous function, p is the value of the norm, and N is 
the total number of pixels in location ‘x’ in images A and 
B. In most applications, Baddeley suggests using the 
following function: 
   ,,min czzw   (8) 

where c > 0 is a constant [11]. 
If p=1, Δ is the mean of the difference of distances; by 

choosing p=2, Δ is the mean Euclidean distance. For 
p0, Δ approaches its minimum and for p∞, Δ 
approaches the maximum difference between the two 
sets. Here, we selected p=2 and c=1 [12]. The images are 
most similar when the value of Δ is small. This value 
ranges between 0 and c. 

2.5.2 Real data 
 
The registration is performed on real pre- and intra- 
operative MR images of the brain. The results are 
evaluated using “inverse consistency error” metric 
proposed by Christensen et al [13]. The inverse 
consistency metric evaluates registration performance 
based on desired transformation properties. This metric 
measures the inverse consistency error between a forward 
and reverse transformation between two images. Ideally 
the forward transformation should be equal the inverse of 
the reverse transformation implying a consistent 
definition of correspondence between two images. Thus, 
composing the forward and reverse transformations 
together produces the identity map when there is no 
inverse consistency error. The inverse consistency error is 
defined as the squared difference between the 
composition of the forward and reverse transformations 
and the identity mapping. 

The voxel-wise cumulative inverse consistency error 
(CICE) with respect to template image j is computed as: 
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where hij(x) is the transformation from image i to j, M is 
the number of images in the evaluation population and ||.|| 
is the standard Euclidean norm [13-14]. 

3. RESULTS 

The evaluation of the performance of the algorithm with 
respect to other similarity measures, and in response to 
various amounts of Gaussian noise and intensity 
inhomogeneity, is presented in this section.   

3.1. Synthetic Images 

The first step in investigating the performance of RC 
measure is to apply it to synthetic images, as explained in 
the previous section. 

3.1.1 Comparison of RC with conventional similarity 
measures 

In order to evaluate the performance of RC measure, the 
registration result obtained by this similarity measure is 
compared with other common similarity measures 
including: Normalized Mutual Information (NMI), Cross 
Correlation (CC), and Sum of Squared Distances (SSD). 
The results are illustrated in Figure 5. 
 

 
(a) 

 
(b) 

 
(c)

 
(d) 

Figure 5. The comparison of the performance of 
conventional similarity measures: (a) SSD, (b) CC, (c) 
NMI with performance of (d) RC in registering images 

with spatially-varying intensity distortions. 

 
As it can be observed, the RC measure has 

outperformed the other similarity measures in registering 
the two aforementioned images. The results can be better 
evaluated by considering the edge maps of the resulting 
images, as depicted in Figure 6. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. The edge maps of the registration results 
obtained from (a) SSD, (b) CC, (c) NMI, and (d) RC 

similarity measures. 
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The edge maps in Figure 6 are obtained by extracting 
the borders resulting from registration using various 
similarity measures. The edge maps are evaluated 
quantitatively using Baddeley’s delta image metric as 
summarized in the following table: 
 

Table 1.Evaluation of the performance of various 
similarity measures in comparison with RC using BDM 

Normalized 
mutual 

information 
(NMI) 

Sum of 
Squared 

Distances 
(SSD) 

Cross 
Correlation 

(CC) 

Residual 
Complexity 

(RC) 

 

0.2054 0.179 0.173 0.059 Δ 

 

3.1.2 The robustness of RC to Gaussian noise 
 
The MRI images are often corrupted by Gaussian noise, 
which decreases the image quality represented by 
Contrast-to-Noise Ratio (CNR), a commonly used term in 
MR image analysis [15]. CNR can be defined by the 
following formula: 

u

ud
CNR



 


 (10) 
where ߤௗ and ߤ௨ are the mean values of the desired 
region of interest (DROI) and the undesired region of 
interest (UROI), specified in Figure, respectively. ߪ௨ is 
the standard deviation of the undesired region of interest.  
 

 
Figure 7. Definition of the desired region of interest 
(DROI) and the undesired region of interest (UROI).  

 
It is essential to evaluate the robustness of RC in the 
presence of such noises. The images are distorted using 
additive Gaussian noise with various variances, which 
result in various CNR values. The results of registration 
using RC in comparison with CC, SSD, and NMI 
similarity measures in noisy images are evaluated in the 
Table 2: 

Table 2.The evaluation of the robustness of RC in 
comparison with CC, SSD, and NMI in various image 

CNRs using BDM. 

CNR BDM of 
RC 

BDM of 
CC 

BDM of 
SSD 

BDM of 
NMI 

132.36 0.05 0.14 0.12 0.17 
26.28 0.06 0.15 0.16 0.29 
11.94 0.08 0.25 0.25 0.45 
5.16 0.16 0.37 0.41 0.57 
3.14 0.24 0.41 0.49 0.66 

 

As it is apparent from Table 2, the RC similarity 
measure has an acceptable performance even in low 
CNRs about 11. This result is important in registration of 
pre- and intra-operative MRI images. Therefore, a 
registration algorithm which solves denoising problem 
within the same formulation is highly desirable. 

3.1.3 The robustness of RC to spatially-varying 
intensity distortions 

 
It is claimed that RC measure is an optimal similarity 
measure in response to the spatially-varying intensity 
distortions. Thus, it is applied to the problem of 
registering the images with various spatially-varying 
intensity distortions. This distortion is modeled by adding 
mixtures of Gaussian functions with different variances to 
the images. The robustness of RC in comparison with 
CC, SSD, and NMI is evaluated using BDM and the 
results are summarized in Table 3. 

The results obtained in Table 3 imply that RC shows a 
degree of robustness in the presence of high spatially-
varying intensity inhomogeneity values. 

  

Table 3. Evaluation of the robustness of various 
similarity measures in registration of images with 

different values of intensity inhomogeneity. 

Variance 
(pixels) 

BDM of 
RC  

BDM of 
CC 

BDM of 
SSD  

BDM of 
NMI 

10 0.055 0.07 0.07 0.1 
30 0.059 0.17 0.18 0.21 
50 0.06 0.22 0.3 0.42 
100 0.067 0.25 0.32 0.45 
200 0.069 0.225 0.21 0.43 

 

3.2. Real data 

This procedure is then applied for registering the pre-
operative MRI images of the brain to their corresponding 
intra-operative images. The results of evaluation using 
CICE measure are averaged over images of 3 patients, 
which are gathered in Table 4. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. The comparison of registering pre-operative 
images of the brain to their corresponding intra-operative 
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images using various similarity measures: (a) SSD; (b) 
CC; (c) NMI; (d) the overlay of edges of the registration 

result obtained by RC on the reference image. 

Table 4. Evaluation of various similarity measures for 
registration of pre- and intra-operative MRI images using CICE  

 SSD CC NMI RC 
CICE of 
case 1 

63. 7 16.27 10.55 6.35 

CICE of 
case 2 

49.2 14.54 9.38 6.85 

CICE of 
case 3 

52.1 13.89 9.64 7.1 

Mean 
±Variance 

55±7.6 14.9±1.5 9.86±0.38 6.76±0.146 

 
As can be visually inspected from Figure 8(d), where 

the edge map of the resulting image is overlayed on the 
reference image, and can be quantitatively inferred from 
Table 4, RC provides the minimum error in registration 
of images, which are distorted by intensity 
inhomogeneity. Therefore, it has proved to outperform 
the other similarity measures in terms of preserving the 
overall topology and the borders of structures of 
registered images. 

3.3. Modification of RC 

The results can be further enhanced by thresholding 
the DCT coefficients. Human visual system is less 
sensitive to distortions around edges. Therefore, the 
coefficients contributing to higher frequencies can be 
discarded. The most frequent value of coefficients in the 
DCT matrix, occurring mostly in higher frequencies, is 
determined by taking the mode of the matrix. The 
coefficients, which hold this value, are set to zero, and the 
rest of the values remain intact. As the following table 
suggests, the registration is enhanced by 42% in 
comparison with the default RC mode. 

 

Table 5.Thresholded RC vs. Default RC 

 CICE 
Thresholded RC 3.9 
Default RC 6.75 

 

4. CONCLUSION 

 
The conventional similarity measures fail to perform well 
in the presence of slowly spatially-varying intensity 
distortions, which are common in MRI scans of the brain. 
This problem has been solved by using RC similarity 
measure, which was proved to be robust in the presence 
of various values of intensity inhomogeneity and 
Gaussian noises of different variances.  

As shown throughout this paper, RC outperforms the 
NMI, as one of the most well-known similarity measures 
for image registration by 31.5%. In addition, the modified 
RC improves the results significantly by 42% with 
respect to the normal RC.  

RC similarity measure provides desirable results, by 
focusing the optimality procedure around main anatomy 
of the brain from pre-operative scan along with the 
deformation of the tissue occurring in intra-operative 
images. This similarity measure can be used in image 
guided neurosurgery systems, to adapt the required 
analysis to the field of surgical operation. This enables 
the algorithm to compensate for the intensity 
inhomogeneity along with registration process, which 
cannot be solved during surgery using demanding 
processing methods, due to the limitations of operating 
room. 

However, RC with the DCT basis functions only 
captures slowly varying intensity distortions. We are 
currently working on finding optimum basis functions to 
be able to adapt to the registration fields more locally and 
precisely. 
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