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Abstract—Analysis and design of multi-element antenna sys-
tems in mobile fading channels require a model for the space-time
cross-correlation among the links of the underlying multiple-
input multiple-output (MIMO) Mobile-to-Mobile (M-to-M) com-
munication channel. In this paper, based on the Modified Geomet-
rical Two-Ring (MGTR), a Full-Three-Dimensional (3-D) MIMO
channel reference model for M-to-M communication systems
is proposed. In the proposed method named the geometrical
single-bounce two-sphere (SBTS) model, both transmitter and
receiver are moving components. Assuming 3-D Non-isotropic
and single-bounce scattering model, a closed-form expression for
the space-time cross-correlation function (CCF) between each two
sub channels is derived where includes many existing correlation
models as special cases. Some simulation results are presented
as special cases of the derived CCF.

Index Terms—Mobile fading channels, mobile-to-mobile chan-
nels, MIMO channels, multi-element antenna systems, space-time
correlation.

I. INTRODUCTION

Mobile-to-Mobile communication channels are expected to
play an important role in mobile ad-hoc networks (MANETs),
intelligent transportation systems and relay-based cellular net-
works, where both the transmitter (Tx) and the receiver (Rx)
are in motion. In opposition to the conventional Base-to-
Mobile (B-to-M) cellular radio channels, in M-to-M channels,
the base station (BS) is not stationary and therefore it is not
free of local scattering.

In a typical macro-cell, the BS is elevated and receives
the signal within a narrow beam-width, whereas the mobile
station (MS) is surrounded by local scatterers. MIMO channel
modelling of this typical macro-cell environment was investi-
gated in [1] and [2]. However, in outdoor micro-cells, indoor
picocells and the M-to-M communication channels, both Tx
(BS/MST ) and Rx (MS/MSR ) are normally surrounded by
local scatterers. Clearly, the MIMO macro-cell models of [1]
and [2] cannot be used for such environments. For these situ-
ations, we need a double-directional channel model (See e.g.
[3]–[5], in which the double-directional concept is introduced
and some measurements results are provided). Akki and Haber
[6], [7] showed that the received envelope on M-to-M channels
is Rayleigh faded under non line-of-sight (NLoS) condition,
but the statistical properties differ from B-to-M channels.
They proposed a reference model for Single-Input Single-
Output (SISO) M-to-M Rayleigh fading channels. Methods for

simulating SISO M-to-M channels have been proposed in [8]
and [9]. Pätzold et al. proposed a theoretical reference model
for narrow-band MIMO M-to-M communication channel [10]-
[12]. This model is based on geometrical ”Double-Bounce
Two-Ring model” or in simplicity, geometrical ”Two-Ring
model” and belongs to the class of double-directional channel
models. In [12] and [13] the realizable simulation models for
MIMO M-to-M Channels are proposed that all of them are
based on Two-Ring model. In [14], the authors have proposed
the MGTR model for MIMO M-to-M communication channel.
The MGTR model is based on the extension of geometrical
”single-bounce two-ring” (SBTR) model proposed in [15]
for MIMO B-to-M channel. The SBTR model belongs to
the class of double-directional B-to-M channel models. In
[15], the authors have avoided many difficulties of the two-
ring model discussed in [16], [17]. Furthermore, the rightness
of their model has been shown via real experimental data.
The MGTR model, in comparison with SBTR, includes the
mobility of both the transmitter and the receiver. A single- and
double-bounced two-ring parametric reference model has been
proposed in [18] for MIMO M-to-M Ricean fading channels
and simulated.

All previously reported models assume that the field inci-
dent on the Tx or Rx antenna is composed of a number of
waves travelling only in the horizontal plane. This assumption
is acceptable only for certain environments, e.g., rural areas.
However, it does not seem to be appropriate for urban environ-
ment in which the Tx and Rx antenna arrays are often located
in close proximity to and lower than surrounding buildings.
Scattered waves may propagate by diffraction from the tops
of buildings down to the streets, and thus not necessarily travel
horizontally [19]. In [19] a 3-D model,”Double-Bounce Two-
Cylinder” model, is proposed for MIMO M-to-M Rayleigh
fading channels and, in [20] the influence of this 3-D model
on the Capacity of MIMO M-to-M Channels is investigated.

This paper proposes a full-3D theoretical reference model
for MIMO M-to-M Rayleigh fading channels. This model is
based on the MGTR model [14]. From the full-3D refer-
ence model, we derive a closed-form space-time correlation
function (STCCF) for 3D Non-isotropic scattering environ-
ment.Furthermore, we present some simulation results to ver-
ify theoretical derivations.
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Fig. 1. The SBTS model for a 2×2 MIMO channel with 3-D distribution of
scatterers around mobile transmitter MST (left) and mobile receiver MSR

(right).

The remainder of the paper is organized as follows. In
section II we describe the SBTS, a 3-D theoretical reference
model for MIMO M-to-M channels. Based on the SBTS
model, in Section III a closed-form expression for the STCCF
is derived. Section IV presents some simulation results to
verify derived STCCF in III. Finally, concluding remarks are
provided in Section V.

II. THEORETICAL REFERENCE MODEL FOR MIMO
M-TO-M CHANNELS

Consider a narrow-band single-user MIMO communication
system with nT transmitter and nR receiver antenna elements.
Assume both Tx and Rx are in motion and equipped with
low elevation antennas. The radio propagation environment is
characterized by 3-D scattering with NLoS conditions between
the transmitter and the receiver. The MIMO channel can be
described by an nR × nT matrix H(t) = [hij(t)]nR×nT

of
complex faded envelopes.

A. Geometrical SBTS model

The geometry of SBTS model is shown in figure 1 for a
MIMO M-to-M channel with nT = nR = 2 antenna elements,
where local scatterers of MST and MSR are modelled to
be distributed on two separate spheres. The key difference
between our model and the other existing M-to-M models is
that here only single-bounce rays are considered and multiple
bounces are treated as secondary effects. This avoids the
problem of double-bounce two-ring model. As it can be seen
from figure 1, the local scatterers around the transmitter,
denoted by Sk

T (k = 1, 2, . . . , NT ), are located on a sphere of
radius R′, while the local scatterers Si

R (i = 1, 2, . . . , NR)
around the receiver lie on a separate sphere of radius R.
The symbols ϕT and θT denote the main azimuth angle of
departure (AAOD) and the main elevation angle of departure
(EAOD), respectively and the symbols ϕR and θR denote
the main azimuth angle of Arrival (AAOA) and the main
elevation angle of arrival (EAOD),respectively. The symbols
ϕ
′
T and θ

′
T denote the auxiliary AAOD and the auxiliary

EAOD, respectively and the symbols ϕ
′
R and θ

′
R denote the

auxiliary AAOA and the auxiliary EAOD,respectively. It is
assumed that the radii R′ and R are small in comparison
with D, which is the distance between the transmitter and the
receiver (i.e., {max {R,R′} � D}). The antenna spacing at
the transmitter and the receiver are denoted by δT and δR,
respectively. Since the antenna spacing are generally small
in comparison with the radii R′ and R, we might assume
that the inequality {min {R,R′} � max {δT , δR}} is held.
Angles βA

T and βA
R describe the orientation of the Tx and Rx

antenna array in the x-y plane, respectively, relative to the x-
axis. Similarly, angles βE

T and βE
R describe the elevation of

the Tx’s antenna array and Rx’s antenna array relative to the
x-y plane, respectively. Moreover, it is assumed that the Tx
and the Rx move with speeds vT and vR and in the direction
determined by the angle of motion αT and αR, respectively.
Furthermore, 2Δ is the maximum angle spread at MST ,
determined by the 3-D scattering around MSR in both azimuth
and elevation direction. Similarly 2Δ′ is the maximum angle
spread at MSR, determined by the 3-D scattering around
MST in both azimuth and elevation direction. From figure 1,
it is clear that Δ = arcsin(R/D), and Δ′ = arcsin(R′/D).
Note that, geometry of our proposed model includes many
existing geometrical models.

B. Derivation of the reference model

In this subsection, we derive the 3-D reference model for
the MIMO M-to-M channel. In figure 1, by considering the
forward channel (from MST to MSR), the MSR receives
single-bounce rays from both the scatterer Si

R around the
MSR and the scatterer Sk

T around the MST . For the frequency
flat, sub-channel between the antenna elements Ap

T and Al
R,

hlp(t) denotes the time-varying complex baseband equivalent
channel gain. Mathematical representation of the superposition
of rays at the Al

R, results in the following expression for the
channel gain:

hlp(t) =
√

ηT

NT

NT∑
k=1

exp{−j
2π

λ
(dAp

T Sk
T

+

dSk
T Al

R
) + jΨk

T + j2πfk
1 t}+

√
ηR

NR

NR∑
i=1

exp{

−j
2π

λ
(dAp

T Si
R

+ dSi
RAl

R
) + jΨi

R + j2πf i
2t} (1)

where the first and the second summations correspond to the
MST and MSR spheres, respectively. This expression shows
the role of AOAs and AODs in interrelation between the
single-bounce two-sphere model in figure 1 and the nR × nT

channel transfer matrix H(t), in which hlp(t) is the element
of row l and column p. The dXY denotes the distance between
X and Y , ηT and ηR show the respective contribution of
scatterers around the MST and MSR such that ηT + ηR = 1.
NT and NR are the number of scatterers around the MST

and MSR, respectively. Ψk
T and Ψi

R are the associated phase
shifts. λ is the wavelength and frequencies fk

1 and f i
2 are given



by:

fk
1 = fTmax

cos (αT − ϕk
T ) cos (θk

T ) +

fRmax
cos (αR − ϕ

′k
R ) cos (θ

′k
R ) (2)

f i
2 = fTmax

cos (αT − ϕ
′i
T ) cos (θ

′i
T ) +

fRmax
cos (αR − ϕi

R) cos (θi
R) (3)

where fTmax
= vT /λ and fRmax

= vR/λ are the maximum
Doppler frequencies caused by the movement of the Tx and the
Rx, respectively. We also assume

{
Ψk

T

}NT

k=1
and

{
Ψi

R

}NR

i=1
are

mutually independent and identically distributed (i.i.d) random
variables with uniform distributions over [0, 2π).

In the next section we derive the space-time cross-
correlation function (STCCF) of our SBTS reference model.
In what follows, we call ϕk

T the AAoD, θK
T the EAOD, ϕi

R

the AAOA, and θi
R the EAoA.

III. THE STCCF OF THE REFERENCE MODEL

The STCCF plays an important role in MIMO commu-
nication Channels. In this section we derive a closed-form
expression for STCCF. The normalized space-time cross-
correlation between two sub-channel gains hlp(t) and hmq(t)
is defined by ρlp,mq(τ) = E

[
hlp(t)h∗mq(t + τ)

]
, where (·)∗

and E(·) denote complex conjugate operation and the statisti-
cal expectation operation, respectively. Based on independent
properties of Ψk

T and Ψi
R, it can be asymptotically written as:

ρlp,mq(τ) = lim
NT→∞

ηT

NT

NT∑
k=1

exp{−j
2π

λ
(dAp

T Sk
T
− dAq

T Sk
T
+

dSk
T Al

R
− dSk

T Am
R

)− j2πfk
1 τ}+ lim

NR→∞
ηR

NR

NR∑
i=1

exp{−j
2π

λ
(

dAp
T Si

R
− dAq

T Si
R

+ dSi
RAl

R
− dSi

RAm
R

)− j2πf i
2τ}.

(4)

For large values of NT and NR, the discrete AAODs, ϕk
T ,

EAODs, θk
T , AAOAs, ϕi

R, EAOAs, θi
R can be replaced with

continuous random variables ϕT , θT , ϕR and θR with proba-
bility density function (pdf) p(ϕT ), p(θT ), p(ϕR) and p(θR),
respectively. Therefore, (4) can be reduced to the following
integral form:

ρlp,mq(τ) = ηT

∫
θT

∫
ϕT

exp{−j
2π

λ
(dAp

T ST
− dAq

T ST
+

dST Al
R
− dST Am

R
)− j2πf1τ}p(ϕT )p(θT )dϕT dθT +

ηR

∫
θR

∫
ϕR

exp{−j
2π

λ
(dAp

T SR
− dAq

T SR
+ dSRAl

R
−

dSRAm
R

)− j2πf2τ}p(ϕR)p(θR)dϕRdθR (5)

where f1 and f2 are the continues form of fk
1 and f i

2 in
equations (2) and (3), respectively. All of the dXY ’s in first
integral of equation (5) depend on ϕT and θT . Similarly, All
of the dXY ’s in the second integral of equation (5) depend on
ϕR and θR.

Using the law of cosines in appropriate triangles in figure
1, and assumption {min {R,R′} � max {δR, δT }}, we obtain
the following approximations:

dAp
T ST

− dAq
T ST

≈

−δpq
T

[
sin βE

T sin θT + cos βE
T cos θT cos (βA

T − ϕT )
]
, (6)

dST Al
R
− dST Am

R
≈

−δlm
R

[
sin βE

R sin θ
′
R + cos βE

R cos θ
′
R cos (βA

R − ϕ
′
R)

]
(7)

dAp
T SR

− dAq
T SR

≈

−δpq
T

[
sin βE

T sin θ
′
T + cos βE

T cos θ
′
T cos (βA

T − ϕ
′
T )

]
(8)

dSRAl
R
− dSRAm

R
≈

−δlm
R

[
sin βE

R sin θR + cos βE
R cos θR cos (βA

R − ϕR)
]

(9)

Now we apply the law of sines and we obtain the following
identities:

D

sin(ϕ′R − ϕT )
=

R′ cos θT

sin(π − ϕ
′
R)

(10)

D
′

sin(π
2 − θ

′
R)

=
R′ sin θT

sin θ
′
R

(11)

D

sin(ϕR − ϕ
′
T )

=
R cos θR

sin ϕ
′
T

(12)

D
′′

sin(π
2 − θ

′
T )

=
R sin θR

sin θ
′
T

(13)

From figure 1, max {D′} = D + R′, min {D′} = D − R′,
max {D′′} = D + R and, min {D′′} = D − R. Based on
the assumption max {R,R′} � D, we conclude that Δ ≈
R/D, Δ′ ≈ R′/D, D′ ≈ D and, D′′ ≈ D. This observation,
together with sin ε ≈ ε when ε is small, allows us to derive
the following approximation from (10)-(13), respectively:

ϕ
′
R ≈ π −Δ′ sin ϕT cos θT (14)

θ
′
R ≈ Δ′ sin θT (15)

ϕ
′
T ≈ Δsin ϕR cos θR (16)

θ
′
T ≈ Δsin θR (17)

Furthermore, using sin ε ≈ ε and cos ε ≈ 1 when ε is
small, together with (14)-(17), the following approximations
are derived:

cos (βA
R − ϕ

′
R) ≈ − cos βA

R + Δ′ sin βA
R sin ϕT cos θT (18)

cos(αR − ϕ
′
R) ≈ − cos αR + Δ′ sin αR sin ϕT cos θT (19)

cos(βA
T − ϕ

′
T ) ≈ cos βA

T + Δsin βA
T sin ϕR cos θR (20)

cos(αT − ϕ
′
T ) ≈ cos αT + Δsin αT sin ϕR cos θR (21)

Now, by substituting (19) and (21) to continuous form of
(2) and (3), respectively, the following approximations are



derived:

f1 ≈ fTmax
cos (αT − ϕT ) cos θT − fRmax

cos αR +
fRmax

Δ′ sin αR sin ϕT cos θT (22)

f2 ≈ fTmax
cos αT + fTmax

Δsin αT sin ϕR cos θR +
fRmax

cos (αR − ϕR) cos θR (23)

For any given p(ϕT ), p(ϕR), p(θT ) and p(θR) the right
hand side (RHS) of equation (5) can be calculated numeri-
cally, using the trigonometric function relationships given in
equations (6)-(9). Note that the RHS of equation (5) includes
two parts. The first part corresponds to STCCF contributed by
the scattering sphere around the MST , and the second part
comes from the scattering sphere around the MSR. Given
the assumptions {max {R,R′} � D} and {min {R,R′} �
max {δR, δT }}, and by plugging (6)-(9), (18) and (20) into
(5), equation (5) can be approximate by:

ρlp,mq(τ) ≈ ηT

∫
θT

∫
ϕT

exp
{

j
2π

λ
δpq
T

[
sin βE

T sin θT +

cos βE
T cos θT cos (βA

T − ϕT )
]

+ j
2π

λ

[
δlm
R Δ′ sin βE

R sin θT−

δlm
Rx

+ Δ′δlm
Ry

sin ϕT cos θT

]
− j2πf1τ

}
p(ϕT )p(θT )dϕT dθT

+ηR

∫
θR

∫
ϕR

exp
{

j
2π

λ

[
δpq
T Δsin βE

T sin θR + δpq
Tx

+ Δδpq
Ty
×

sin ϕR cos θR

]
+ j

2π

λ
δlm
R

[
sin βE

R sin θR + cos βE
R cos θR×

cos (βA
R − ϕR)

]
− j2πf2τ

}
p(ϕR)p(θR)dϕRdθR

(24)

where δpq
Tx

= δpq
T cos βE

T cos βA
T , δpq

Ty
= δpq

T cos βE
T sin βA

T ,
δlm
Rx

= δlm
R cos βE

R cos βA
R , and δlm

Ry
= δlm

R cos βE
R sin βA

R .
Now we consider the 3-D non-isotropic scattering. Several

different scatterer distributions, such as uniform, Gaussian,
Laplacian, and von Mises, have been used in prior works to
characterize the continuous random variables ϕT and ϕR. In
this paper, we use the von Mises pdf because it approximates
many of the previously mentioned distributions and leads to
closed-form solutions for many useful situations [19]. The von
Mises pdf is defined as [21]

p(ϕ) =
1

2πI0(K)
exp[K cos (ϕ− μ)] (25)

where ϕ ∈ [−π, π), I0(·) is the zeroth-order modified Bessel
function of the first kind, μ ∈ [−π, π) is the mean angle
at which the scatterers are distributed in the x − y plane,
and k controls the spread of scatterers around the mean. To
characterize the continuous random variables θT and θR, we
use the pdf [22]

p(θ) =
{ π

4|θm| cos (π
2

θ
θm

) , |θ| ≤ |θm| ≤ |π2 |
0 , otherwise

where θm is the maximum elevation angle and takes values in
the range 10◦ ≤ |θm| ≤ 20◦ [23].

Now we consider the von Mises pdf for the Tx and Rx az-
imuth angles as p(ϕT ) = exp[KT cos ϕT − μT ]/(2πI0(KT ))
and p(ϕR) = exp[KR cos ϕR − μR]/(2πI0(KR)), respec-
tively, and by considering the pdf for the Tx and Rx ele-
vation angles as p(θT ) = π cos (πθT /(2θTm

))/(4|θTm
|) and

p(θR) = π cos (πθR/(2θRm
))/(4|θRm

|) respectively. Under
this conditions, and by plugging equations (22) and (23)
to (24), calculating the ϕ·-dependent integrals by using the
equality

∫ π

−π
exp(a sin ϕ + b cos ϕ)dϕ = 2πI0(

√
a2 + b2) [

[24], eq. 3.338], the following expression for the STCCF is
derived after some algebraic manipulations:

ρlp,mq(τ) ≈ ηT

I0(KT )
exp

[
−j

2π

λ
δlm
Rx

+ j2πτfRmax
cos αR

]
∫ θTm

−θTm

π

4|θTm
| cos (

π

2
θR

θRm

)I0(
√

x2 + y2 cos θT ) exp
{

j
2π

λ
ζ

sin θT

}
dθT +

ηR

I0(KR)
exp

[
j
2π

λ
δpq
Tx
− j2πτfTmax

cos αT

]
∫ θRm

−θRm

π

4|θRm
| cos (

π

2
θR

θRm

)I0(
√

z2 + w2 cos θR) exp
{

j
2π

λ
ζ

sin θR

}
dθR

(26)

where ζ = δpq
T sin βE

T + δlm
R sin βE

R , and parameters x, y, z
and w are

x = j
2π

λ
δpq
Tx
− j2πτfTmax

cos αT + KT cos μT / cos θT ,

y = j
2π

λ
(δpq

Ty
+ δlm

Ry
Δ′)− j2πτ(fTmax

sin αT +

Δ′fRmax
sin αR) + KT sin μT / cos θT ,

z = j
2π

λ
δlm
Rx
− j2πτfRmax

cos αR + KR cos μR/ cos θR,

w = j
2π

λ
(δpq

Ty
Δ + δlm

Ry
)− j2πτ(ΔfTmax

sin αT +

fRmax
sin αR) + KR sin μR/ cos θR.

To obtain the STCCF for the 3-D MIMO M-to-M channel,
the integrals in (26) have to be evaluated numerically, because
they do not have closed-form solutions. Since θT and θR

are small angles, i.e., |θT |, |θR| ≤ 20◦, using approximation
cos θT , cos θR ≈ 1, sin θT ≈ θT , and sin θR ≈ θR, solving the
integrals in (26) leads to the following STCCF in a closed-
form:

ρlp,mq(τ) ≈ ηT

I0(KT )
exp

[
−j

2π

λ
δlm
Rx

+ j2πτfRmax
cos αR

]

I0(
√

x2
1 + y2

1)
cos ( 2π

λ ζ θTm
)[

1− ( 4 ζ θTm

λ )2
] +

ηR

I0(KR)
exp

[
j
2π

λ
δpq
Tx
−

j2πτfTmax
cos αT

]
I0(

√
z2
1 + w2

1)
cos ( 2π

λ ζ θRm
)[

1− ( 4 ζ θRm

λ )2
]

(27)



where the parameters x1, y1, z1 and w1 are

x1 = j
2π

λ
δpq
Tx
− j2πτfTmax

cos αT + KT cos μT ,

y1 = j
2π

λ
(δpq

Ty
+ δlm

Ry
Δ′)− j2πτ(fTmax

sin αT +

Δ′fRmax
sin αR) + KT sin μT ,

z1 = j
2π

λ
δlm
Rx
− j2πτfRmax

cos αR + KR cos μR,

w1 = j
2π

λ
(δpq

Ty
Δ + δlm

Ry
)− j2πτ(ΔfTmax

sin αT +

fRmax
sin αR) + KR sin μR.

Note that, many existing correlation functions are special
cases of our 3-D MIMO M-to-M space-time correlation func-
tion in (27). For example:

• For 2-D distribution of scatterers (θTm
= θRm

= 0
), our reference model reduces to 2-D MIMO M-to-
M communication, or same MGTR model [14]. In this
conditions, the STCCF in (27) simplifies to equation (22)
of [14], by substituting KT = KR = 0 in (27) for 2-D
isotropic scattering (in azimuth plane) around the MST

and the MSR.

• For 2-D distribution of scatterers (θTm
= θRm

= 0), and
stationary MST (fTmax

= 0) our 3-D reference model’s
STCCF reduces to MIMO B-to-M communication chan-
nel model, SBTR model, proposed in [15] (eq. (7) of
[15]).

• For 2-D distribution of scatterers (θTm
= θRm

= 0),
stationary MST (fTmax

= 0), and no scattering around
the MST as in a macro-cell (ηT = 0), our 3-D reference
model’s STCCF reduces to MIMO B-to-M communica-
tion channel model proposed in [2].

• If all of the above items’s assumptions are established,
and l = m and p = q, our reference model’s STCCF
simplifies to conventional ”One-Ring” model for SISO
B-to-M communication channel. This reduces (27) to the
simplest special case, well-known Clark’s temporal cor-
relation function, i.e., J0(2πfRmax

τ) [25], where J0(·) is
the Bessel function of the first kind of zero order.

IV. SIMULATION RESULTS

In this section, we present some simulation results to verify
the theoretical STCCF of the proposed reference model. The
following parameters were chosen for the model. The angles
of antenna array at transmitter βA

T and βE
T , and at the receiver

βA
R and βE

R were defined as βA
T = π/4, βE

T = π/3, βA
R = π/4

and βE
R = π/2. At the transmitter side, the angle of motion

αT was set to π/4, while the receiver was moving at an angle
of αR = 0. Identical maximum Doppler frequencies fTmax

=
fRmax

= 91 Hz was assumed, and the wavelength λ was set
to λ = 0.15 m. Furthermore, the parameters Δ, Δ′ and ηR

have set to Δ = π/3, Δ′ = π/6 and ηR = 0.2, according to
table I of [15]. Maximum elevation angle at Tx and Rx was
θTm

= θRm
= 20◦. The temporal auto-correlation function
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Fig. 2. Temporal ACF of the proposed reference model (δpq
T = δlm

R = 0).
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Fig. 3. The STCCF of the proposed reference model for δpq
T = δlm

R = 0.5λ.

(ACF) is illustrated in figure 2. Figure 3 shows the space-
time correlation function of the proposed reference model for
δpq
T = δlm

R = 0.5λ.
The 2-D space-time correlation functions for M-to-M chan-

nels proposed in [10]- [14] and [18] suggest that two vertically
placed antennas are completely correlated and no diversity
gain is available [19]. However, the proposed 3-D space-
time correlation function shows that vertically placed antennas
can have small correlations and provide considerable diversity
gain. To illustrate this, figure 4 shows the space-time correla-
tion functions of two vertically spaced antennas at the Tx for
several maximum elevation angles θTm

. Other parameters used
to obtain curves in figure 4 are nR = 1 and βE

T = π/2. As the
maximum elevation angle θTm

increases from 0◦ to 20◦, the
correlation between the two antennas reduces dramatically.

V. CONCLUSION

This paper proposed a theoretical 3-D reference model for
Rayleigh fading MIMO M-to-M channels. This 3-D reference
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Fig. 4. The normalized STCCF of two vertically spaced antennas at the Tx
for several maximum elevation angles θTm .

model was based on extension (from 2-D to 3-D) of modified
geometrical two-ring model, that avoids the technical difficul-
ties of the two-ring model. The closed-form cross-correlation
function for 3-D non-isotropic scattering was derived for this
proposed reference model. It is shown that many existing
correlation functions are special cases of our 3-D MIMO M-
to-M space-time correlation function. Finally, some simulation
results are presented to verify theoretical derivations.
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[20] A. G. Zajić and G. L. Stüber, ”Influence of 3-D Spatial Correlation
on the Capacity of MIMO Mobile-to-Mobile Channels,” in Proc. IEEE
VTC2007-Spring, pp. 461-465, Dublin, April 2007.

[21] A. Abdi, J.A. Barger, and M. Kaveh, ”A parametric model for the
distribution of the angle of arrival and the associated correlation function
and power spectrum at the mobile station,” IEEE Trans. on Veh. Tech.,
vol. 51, pp. 425434, May 2002.

[22] J.D. Parsons and A.M.D. Turkmani, ”Characterisation of mobile radio
signals: model description,” IEE Proc. I, Commun., Speach, and Vision,
vol. 138, pp. 549556, Dec. 1991.

[23] Y. Yamada, Y. Ebine, and N. Nakajima, ”Base station/vehicular antenna
design techniques employed in high capacity land mobile communica-
tions system,” Rev. Elec. Commun. Lab., NTT, pp. 115121, 1987.

[24] I. S. Gradshteyn and I. M. Rizhik, Table of Integral, Series and Products,
5th ed., A. Jeffrey, Ed., San Diego, CA: Academic, 1994.

[25] R. H. Clarke, ”A statistical theory of mobile-radio reception,” Bell Syst.
Tech. J., vol. 47, pp. 957-1000, July-August 1968.


