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Abstract— Proton magnetic resonance spectroscopy (1H-

MRS) is a non-invasive diagnostic tool for measuring 

biochemical changes in the human body. Acquired 1H-MRS 

signals may be corrupted due to a wideband baseline signal 

generated by macromolecules. Recently, several methods have 

been developed for the correction of such baseline signals, 

however most of them are not able to estimate baseline in 

complex overlapped signal. In this study, a novel automatic 

baseline correction method is proposed for 1H-MRS spectra 

based on ensemble empirical mode decomposition (EEMD). 

This investigation was applied on both the simulated data and 

the in-vivo 1H-MRS of human brain signals. Results justify the 

efficiency of the proposed method to remove the baseline from 
1H-MRS signals. 

 

I. INTRODUCTION 

Proton magnetic resonance spectroscopy (1H-MRS) is 
widely used to detect metabolites’ concentration variation, 
which can indicate a diseased condition in human tissue.            
1H-MRS should be quantified well to show the metabolic 
variations and exact metabolites detection. However, 
existence of a background signal, called baseline signal, 
originated from macromolecules and lipids, hinders the 
performance of 1H-MRS quantification methods. The 
background signals are characterized by broad spectral lines, 
resulting to overlap with metabolites’ spectra in the 
frequency domain 

Recently, a number of studies have been carried out to 
explore a proper method to remove the baseline artifact. Two 
different techniques were implemented to correct the 
baseline signal; reconstruction of the first points of the free 
induction decay (FID) [1], and approximation of the baseline 
in the frequency domain [2]. Most of such techniques are 
composed of two essential steps: 1) baseline recognition step 
in which the signal-free regions of the spectrum are detected 
using some thresholding mechanisms [3, 4], and 2) 
implementation based on iterative methods. The performance 
of such baseline correction methods are limited in the 
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complex spectra with overlapping peaks. In a recent 
investigation, an automatic baseline correction method was 
implemented based on a combination of baseline recognition 
and an iterative baseline modeling method [5]. It provided 
good results for the complex MRS spectra with overlapping 
peaks, but it is sensitive to noise factor and cannot follow up 
the corrected baseline when the trend of baseline is similar to 
metabolites.  

In this study, ensemble empirical mode decomposition 
(EEMD) was employed to estimate the baseline of 1H-MRS 
signals. The method which was optimized for the 
applications in the human brain, is able to estimate the most 
of the baseline points hidden under the overlapping signals 
and noise. 

II. MATERIALS AND METHOD 

In order to estimate the baseline, the signal was 
decompose to several sub signals based on ensemble 
empirical mode decomposition (EEMD) algorithm. Then the 
sub signals are selected and linear combined to estimate the 
baseline. 

A. Ensemble Empirical Mode Decomposition (EEMD)  

The EMD is an iterative method that can decompose any 
complex data set into some oscillations called intrinsic mode 
functions (IMF). An IMF represents an oscillatory mode of 
the main signal, that the summation of them get the original 
signal [6]. Each IMF was calculated in an iterative procedure 
called sifting procedure as follow: 

1. Determine the maxima and minima envelopes with a 
spline interpolation. 

2. Calculate the mean of two envelopes and subtract it 
from the signal. 

)()()( 1)1( tmtstd   (1) 
 

 

where s(t) is the original signal and the parameter m1(t) is the 
mean of the calculated envelopes at first iteration. d(1)(t) is 
considered as the modified data. The sifting procedure repeat 
k times and d(k)(t) is calculated. 

3. Consider d(1)(t) as the modified data and similarly the 
steps one and two repeat k times. 

)()()( )1()1()( tmtdtd kkk    (2) 

where dk(t)  is the k-th data and m(k-1)(t) is the (k-1)-th 
mean of the calculated envelopes at (k-1)-th iteration. The 
value of k is determined according to a stopping criterion 
that usually defined as: 
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where  .  denotes the Euclidean distance. The parameter 

d(k)(t) consider as the first IMF when the value of SD 
becomes smaller than a threshold.  

4. When the criterion SD becomes smaller than a 

threshold, the procedure stops and d(k)(t) is 

determined the first IMF. 

}  {|)()( )(, ThresholdSDtdtIMF kii   (4) 

5. The residual r1(t) is calculated by subtracting IMF1 
from signal s(t) and the procedure are repeated for 
r1(t) to find next IMF. 

)()()( 11 tIMFtstr   (5) 

6. This repetition stops when r1(t) becomes a monotonic 
function and cannot extract more IMFs from it.  

)()()( 1 tIMFtIMFtr iii    (6) 

There is a mode-mixing problem in the EMD method [6] 
, which causes a serious aliasing in the time-frequency 
distribution in an IMF. In order to increase the reliability an 
improved EMD method is used which called EEMD [7]. 
EEMD is an iterative noise-assisted data analysis method 
that that repeatedly performs sifting process. It takes the 
ensemble means of IMFs by adding a white noise to the 
original signal and calculation the intrinsic oscillatory 
functions (IOF). 

The IOFs calculation procedure can be obtained as follow: 

1. Set the number of ensemble M 

2. Construct the noise and add it to signal 

3. Apply the EMD method on the noised-added signal 

and calculate IMFs: IMFi = [IMF1,k … IMFi,k]T 

4. Repeat the steps 2 and 3 while i be equal to M  

5. Calculate the ensemble means of M trials for each 

IMF to achieve IOFs: 
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B. Signal Model 
1H-MRS signal s(t) is contained three main terms, which 

can be modeled by: 

)()(met(t))( tntbts   (8) 

The first term; met(t) represents the metabolites’ signal 
whose model function is known. The function met(t) can be 
defined as: 
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where K is the number of metabolites (k = 1, ..., K), mk(t) the 
profile of metabolite, ak the amplitude, φk the phase shift, dk 

the damping correction, fk the frequency shift and 1j . 

The second term; b(t) represents the baseline signal which its 

model function is not known exactly. The third term; n(t) 
denotes the white Gaussian-distributed noise..  

C. 1H-MRS Simulated signal generation 

In order to evaluate the proposed method we used the 
simulated 1H-MRS signals, which were generated using 
MATLAB. Nine different metabolites were combined with a 
Gaussian noise and a baseline were added to it. The 
parameters phase shifts φk, damping perturbations dk, and 
frequency shifts fk were set within the following values:          
-π ≤ φk ≤ π, 0ppm ≤ dk ≤ 0.1ppm, -0.1 ppm ≤ fk ≤ 0.1 ppm. 

The profiles were multiplied by an amplitude value to 
change the concentration of each metabolite mimicking the 
normal and tumours brain (Table. I). Baseline was generated 
and added to signal with interest signal-to-baseline ratio 
(SBR) [8]. In addition, white Gaussian noise is added to 
signal with interest signal-to-noise ratio (SNR) to obtain s(t) 
in (8). Finally, the S(f) was calculated by applying Fourier 
Transform (FT) to s(t). 

)()}({ fSts   (10) 

TABLE I.  METABOLITES AND THEIR CONCENTRATION [9]; ABSOLUTE 

CONCENTRATIONS AND CONCENTRATION RATIOS OF UNTREATED PEDIATRIC 

BRAIN TUMORS 

Metabolite Amplitude  

(mean ± standard deviation) 

Alanine 1.7±1.1 

Choline 3.4±2.0 

Creatine 3.5±2.6 

γ-Amino butyric acid (GABA) 2.0±1.0 

Glutamine 5.0±3.5 

Lactate 3.0±2.5 

Myo-Inositol 8.2±5.8 

N-Acetyl-L-Aspartic Acid (NAA) 1.3±1.1 

Taurine 2.5±1.0 

D.  Signal Acquisition 

Proton MRS imaging experiments were performed on a 
1.5T Siemens Avanto MRI/MRS system in the room 
temperature using point resolved spectroscopy (PRESS) [10] 
pulse sequence with manufacture’s built-in auto-shimming 
on the volume-of-interest, chemical shift selective 
suppression (CHESS) [11] to suppressed water and 3D 
imaging parameters as follows: TE/TR = 30/1500ms, voxel 
size = 8mm × 8mm × 8mm, NEX = 1, frequency bandwidth 
= 1000Hz, number of data points = 512 and 16×16×16 array 
chemical shift imaging (CSI) grid. 

E. Baseline Estimation 

Baseline is a low-frequency phenomenon at the 
frequency-domain. Hence, it is expected that the major 
baseline components are located in the high-order IOFs. The 
baseline can be estimated by subtracting the last several IOFs 
from the signal. EEMD was applied to the simulated signal 
and found that the summation of some last IOFs, follow the 
baseline trend plus an residual signal (R(f)). The R(f) is 
calculated by the half distance between extrema envelopes. 

2
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where Envmax(f) and Envmin(f) are the maximum and minimum 
envelope of the signal which were obtained by finding the 
peaks and performing interpolation. There is significant 
different across the full width half maximum (FWHM) of the 
metabolites and baseline. The FWHM of the metabolites in 
1H-MRS is less than 0.2ppm [12]. The threshold set to 
0.4ppm based on a priori knowledge and experimentally can 
be tuned according to the baseline behavior. 

The peaks of all IOFs were calculated, then the curve 
fitting was performed to fit Lorentzian to each peak. The 
Lorentzian function parameters define as:  
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The nonlinear curve-fitting problem was solved in the 
least-squares sense. The Lorentzian FWHM calculation is 
actually straightforward and can be read off from the 
equation (12).  

32 PFWHM   (13) 

There are fewer baseline components in the early IOFs, 
but more metabolite components. Therefore, the attenuation 
correction was applied to IOFs to estimate the baseline by 
linear weighted combination of selected IOFs. 





I

i

ii fCafB
1

)()(  (14) 

where B(f) is the estimated baseline by combination of IOFs, 
I is the number of selected IOFs, Ci(f) is the i-th IOF and ai is 
the attenuation correction which should be obtained by 
analyzing the simulated signal. 

The following steps constitute the proposed baseline 
estimation procedure: 

1. R(f) was calculated from (11). 

2. EEMD was applied to R(f) to obtain IOFs. 

3. FWHM of all the peaks were calculated in all IOFs 

from (12) and (13). 

4. Threshold was applied to FWHM of all the peaks in 

each IOF to select candidate IOFs for baseline 

estimation. 

5. Selected IOFs were linearly combined to estimate the 

baseline (14). 

III. RESULTS  

Two types of experiments are presented. First, several 
different simulated signals are generated to evaluate the 
performance of the proposed EEMD-based method. The S(f) 
is processed to obtain an enhanced reconstructed Š(f), which 
is free from baseline. Second, the 1H-MRS of normal brain 
was used to calculate the correlation of baseline in different 
regions. There are correlations, between the baseline spectra 
for different tissues. 

A. Simulated 1H-MRS signals 

For the simulated signal, the quantitative evaluation is 

assessed by the relative signal-to-error ratio (RSER): 
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The first IOF is contained the highest frequency 

component and the last IOF is contained the lowest 

frequency component. The proposed method is compared to 

the automatic baseline correction method which employed 

continuous wavelet transform (CWT) [5]. Fig. 1 shows the 

spectrum of the estimated baseline performing by the two 

methods. RSER of the proposed method was 17.95dB and 

14.54dB for the baseline estimation method in [5]. Fig. 2 

shows the results of the RSERs in different SNR calculated 

in 100 experiments. 

 

 

B. In-vivo 1H-MRS of human brain 

The proposed method was applied on 1H-MRS of normal 
human brain. All the voxels’ spectrums were recorded and 
then the correlation coefficient of the selected voxel from 
white matter (WM) and gray matter (GM) compared to all of 
the voxel at the same slice. Fig. 3 shows the result of the 
correlation coefficient map between selected voxel and other 
voxels. The map shows there is a strong correlation between 

 

Figure 2: RSERs of proposed method and iterative method which used 

CWT, under different SNR. 

 

Figure 1: Baseline estimation result on simulated data; sample spectrum 

of baseline estimation. 
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the same regions. The map shows there is strong correlation 
between the same regions. Fig 4 shows the correlation 
coefficient map of the baseline estimation results on the 
tumor brain. The baseline estimation processing takes on 
average less than 1 second for each voxel (about 1 hour for 
full 3D 16×16×16 voxels MRSI with 512 data points) with 
implementation on a PC, Intel Core i7 and 4 GB of memory 
using the MATLAB v 7.14 under Microsoft Windows 7. 

IV. CONCLUSION 

A novel method for 1H-MRS baseline correction based on 

the EEMD is presented. Baseline estimation and removal is 

achieved through the development of EEMD-based methods 

with prior knowledge on 1H-MRS signal. The techniques 

developed by using 1H-MRS metabolites information to 

modify the IOFs and linear combine them as estimated 

baseline. Simulated and in-vivo results indicate that the 

EEMD is an effective tool to estimate the baseline in 1H-

MRS signal. The techniques can be optimized by tuning the 

parameters of the IOFs combination with analyzing of much 

more data.  
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Figure 3: Baseline estimation result on normal brains; (a) T2-weighted anatomical image of the brain (b) baseline estimation correlation coefficient map 

between selected voxel from GM and all other voxels at the same slice (c) baseline estimation correlation coefficient map between selected voxel from 

WM and all other voxels at the same slice  

 

 (a)              (b)   

 
Figure 4: Baseline estimation results on tumor brain; (a) baseline 

estimation correlation coefficient map between selected voxel from non-

tumor region and all other voxels at the same slice and (b) baseline 

estimation correlation coefficient map between selected voxel from 

tumor region and all other voxels at the same slice  
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