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Abstract—Diffusion tensor imaging (DTI) possesses high 

dimension and complex structure, so that detecting available 

pattern information and its analysis based on conventional 

linear statistics and classification methods become inefficient. In 

order to facilitate classification, segmentation, compression or 

visualization of the data, dimension reduction is far-reaching. 

There have been many approaches proposed for this purpose, 

which mostly rely on complex low dimensional manifold 

embedding of the high-dimensional space. Dimension reduction 

is commonly applicable through linear algorithms, such as 

principal component analysis and multi-dimensional scaling; 

however, they are not able to deal with complex and high 

dimensional data. In this light, nonlinear algorithms with the 

capability to preserve the distance of high dimensional data 

have been developed. The purpose of this paper is to propose a 

new method for meaningful visualization of brain white matter 

using diffusion tensor data to map the 6-dimensional tensor to a 

three dimensional space employing Markov random walk and 

diffusion distance algorithms, leading to a new distance-

preserving map for the DTI data with lower dimension and 

higher throughput information. 

Keywords- human brain white matter; nonlinear 

dimensionality reduction; Diffusion Map; distance-preserving 

mapping; diffusion tensor magnetic resonance imaging 
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I. INTRODUCTION 

To gain a better insight through disease effects on brain 

anatomy and physiology, a systematic pattern of anatomy 

must be detected in anatomical imaging of the brain. 

diffusion tensor imaging (DTI) is a promising method, which 

yields fundamental information of the brain tissue 

microstructure and composition by means of magnetic 

resonance imaging (MRI)-based measurement of local 

diffusion tensor (DT) of water molecules in human brain [1]. 

In particular, DTI is used to characterize and to map the 3-

dimensional (3D) diffusion of water as a function of spatial 

location and a 3D image like mean-diffusivity (MD) or 

fractional-anisotropy (FA), which can be measured from the 

main orientation of water diffusion for each voxel in the 

image. Due to the lack of constraining process of diffusion 
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by axons present in myelinated fiber tracts, brain regions, 

like cortical and subcortical gray matter and cerebrospinal 

fluid, have a vast isotropic diffusivity [2]. The diffusion 

tensor can be utilized for characterizing magnitude, degree 

of anisotropy and orientation of directional diffusion. 

Therefore, mapping diffusion anisotropy and principal 

diffusion directions is one of the best ways to estimate white 

matter connectivity patterns in the brain obtained from white 

matter tractography. This could result in voxel-wise and 

tensor-wise analysis of diffusivity and anisotropic change in 

the white matter, which enables neuroscientists to chart the 

complex network of neural fiber tracts in the human brain. 

DTI possesses high dimension and complex structure, so 

that detecting available pattern information and its analysis 

based on conventional linear statistics and classification 

methods become inefficient. In order to facilitate such 

classification, segmentation, compression or visualization of 

the data, derogating the undesirable properties of high-

dimensional spaces, i.e. dimensionality reduction is far-

reaching. Dimensionality reduction is based on finding valid 

structures and geometric characterization of high 

dimensional data, to be realized with several techniques, 

which are categorized into linear and nonlinear methods. 

Linear methods are based on classic approaches, such as 

principal component analysis (PCA) and multi-dimensional 

scaling (MDS) [3]. Although they guarantee acquisition of 

real data structures lying on or near a linear subspace of high 

dimensional input space, they cannot deal with complex 

nonlinear data. This has led to development of nonlinear 

methods, such as Kernel PCA [4], iso-map and diffusion-

map (DM) techniques for biological data with highly 

nonlinear manifolds [3, 5-10]. 
This paper seeks to address a technique for multiple 

valued DTI data visualization, based on images with pixels 
sampled from underlying manifold, e.g. every single pixel 
may consist of a high dimensional vector as the positive 
semi-definite tensor in a DT-MRI acquisition. Diffusion map 
(DM) represents a dataset via a weighted graph of 
corresponding points to vertices and edges, in which the 
spectral properties of the graph Laplacian would be used to 
map 6-dimensional data to a 3D representation. Diffusion 
distance is applied by using a specific value, which is 
obtained for the closeness of each data point, performing the 
random walk for a number of time steps. Thus, pairwise 
diffusion distances in the low-dimensional representation of 
the data is maintained [11, 12]. Differences between DT-
MRI pixels are mainly evaluated using a diffusion distance 
metric with regard to rank 3, second-order positive semi-
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definite DTs, while the difference between DT pixels is 
approximated by DM. In this article, we evaluated case 
studies of high-dimensional phantom data as well as normal 
clinical brain DT-MRI.  

II. METHOD 

A. Theory 

To represent the best reflection of the underlying DTI 
data, high dimensional DT-MRI data are used. As long as the 
pixel dimensionality is greater than 3D space, dimensionality 
reduction must be employed in order to represent the low 
dimensional image pixels. To achieve this intention, pixel 
dissimilarities must be measured and pixels must be mapped 
to perceptually meaningful colors [13]. The principal 
manifold, which is obtained with distance metric, is sampled 
to return high dimensional pixel values. Manifold learning 
techniques are used to learn the manifolds (e.g. DM), derived 
analytically or by approximation. Diffusion distance between 
two corresponding points on the manifold are the measured 
differences between any two high dimensional pixels. 
Similarities between DT pixels are evaluated by diffusion 
metric that scales the rank 3 manifold of DT pixels. DTs are 
symmetric 3×3 matrices, or second-order rank 3 diffusion 
tensors. They contain 6 unique elements. Furthermore, DTs 
must be positive semi-definite (PSD), in that 6 unique 
elements are defined in Diffusion tensors which are 

symmetric 3×3 matrices, i.e. 
3 6

(y) : y  R   R .f    An 

example of data distribution of a real data is shown in Fig. 1. 

Measuring dissimilarities between observations is an 
important step in handling high dimensional data. As far as 
the DT-MRI goes, estimation of DM and dissimilarity 
metrics are needed for the manifold learning structures, 
assuming y
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Figure 1.  Distribution of multi-dimensional DT-MRI data 

 

 

B. Implementation of Diffusion Map Algorithm in DT-MRI 

The implemented algorithm proposed for DT-MRI of   

human brain is outlined in six steps as follows: 

1. Constructing the similarity matrix, W, of the graph; 
the entries of W are the weights along the edges 
connecting corresponding nodes i and j, to be 
determined by the heat kernel as follows [11]: 
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       (1) 

in which W is PSD and ||.|| is the Euclidean norm. 

One should note that Wϵ R
k×k is a symmetric matrix. 

In the DM algorithm, the choice of the parameter 𝜀 
is very important. Lafon in [10] chose 𝜀 to be in the 

order of the average smallest non-zero value of || yi 

– yj ||
2
, that is:  
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2. Formulating k×k normalization matrix of D; diagonal 

entries of D are row or column sum of W [14]: 

1
 = ,   1...

n

ii ijj
D W i n


        (3) 

The W matrix is then normalized as 
1

 = P D W


               (2) 

 Since DMs adopted from the theory of dynamical 

systems, matrix P is considered as a Markov matrix, 

defining the forward transition probability matrix of 

a data point.   

3. Find the eigenvalues of P; the conjugate matrix of P 

is calculated as below: 
1 1

2 2 =   P D W D


            (3) 

This so-called normalized graph Laplacian 

preserves the eigenvalues. 

4. Singular value decomposition (SVD) of P ; to be 

calculated by: 

 

 =   P U U


              (4) 

yielding the eigenvalues 

1 2
 = diag([ , , ..., ])

n
    and eigenvectors in 

matrix 
1 2

[ , , ..., ]
n

U u u u  [12]. 

5. Computing eigenvectors of P; one notes that 

eigenvalues of P and P stay the same [12]: 
1

2  V D U


               (5) 

6. Creating low-dimensional coordinates in the 

embedded space ψ using Ʌ and V, as follows: 

 = V                                        (6) 
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Figure 2.  Overview of the proposed method 

 

Now, for each n-dimensional point xi, there is a 
corresponding d-dimensional coordinate, where d < n. The 
coordinates for a single point can be expressed as: 

     2 2 3 3 1 1
 :    [ , ,  ... , ] 

d i i i d d i
y y y y     

 
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                                                                          (7) 
An overview of all these steps is shown in Fig. 2. 

 

III. MR DATA 

The simulated MR images used for this work are adopted 
from [15].  

The real MR acquisition was carried out on four normal 
subjects on a 1.5T clinical Siemens scanner (MAGNETOM 
Avanto, Erlangen, Germany). The maximum gradient 
strength was 40 mT/m and the slew rate equaled 200 
mT/m/s. DT images were acquired using a single-shot echo-
planar pulse sequence with the following specifications: 
TR/TE = 8500/97 ms, b-value = 1000 s/mm

2
, FOV = 171 

mm, matrix size = 76×76, slice thickness = 2.5 mm, voxel 
size = 2.3×2.3×2.5 mm

3
, number of directions = 30, and 

NEX = 1. 

IV. RESULTS 

A. Results on simulated MR images 

In these simulated data, the implemented DM method 
was compared with other methods, such as fractional 
anisotropy (FA) map, PCA, MDS and ISO-MAP (as shown 
in Fig. 3). Since the amount of the Entropy of a color in the 

color image represents the amount of information, here, we 
evaluated the image entropy resulting from each method, 
which is indicated in Table I. As it can be inferred from Fig. 
3 and Table I, DM technique extracts more information in a 
DT-MR image. 

B. Results on real MR images 

Fig.4 indicated the results of applying the proposed DM 
technique on the real data, in comparison with the 
corresponding FA map. It is apparent that DM map contains 
more information than both T2-weighted image and FA map. 
This suggests that DM could be successfully employed for 
further statistical analysis of human brain.  

V. DISCUSSION AND CONCLUSION 

This study set out to propose a method for visualization 
of DT-MRI as a robust method to noise, preserving distance 
in nonlinear data, while keeping low-dimensional space. The 
proposed analysis suggests that the DM dimensionality 
reduction improves white matter segmentation and 
visualization, particularly in the low-SNR regime of DT-
MRI, while it stays an active research problem. As DT-MRI 
has found wide applications in research and clinics, the 
proposed method could open new insights about how 
pathologies and treatments could affect the DTI 
measurements. 

Manifold learning problems involve vector bundle on graphs 
providing the demand for vector diffusion mapping. Since 
vector diffusion mapping is an extension form of diffusion  

 

 
 

2370



  

 

Figure 3.  Simulated data obtained using different methods 

mapping, their properties and convergence behavior are 
similar. Besides, because the idea of vector diffusion 
mapping is a natural extension form of graph Laplacian 
operator combined with diffusion mapping on graphs, in the 
future, we are going to investigate the issues of smoothing 
and interpolation, as well as clustering of components of DTI 
datasets, leading to successful fiber clustering.  
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TABLE I.  THE ENTROPY OF THE COLOR IMAGES EMPLOYING  EACH 

TECHNIQUE 

Method PCA MDS ISOMAP DM 

Entropy 53.05 50.17 58.87 803.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Real data (a) T2-weighted images (b) fractional anisptropy (FA) 

maps (c) proposed diffusion map (DM) method 
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