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ABSTRACT ber of paths. In each path, the signal reaches the receiver 

We present a cross-correlation model for Multiple-Input 
Multiple-Output (MIMO) Rayleigh fading channels in a 
two-dimensional (2D) multipath random media when en- 
ergy is non-uniformly receiveatransmitted to/from the re- 
ceiverltransmitter along propagation directions. We inves- 
tigate the impact of non-omnidirectional propagation pat- 
tern of antennas along with the impact of non-uniform dis- 
tribution of the scatterers in the propagation environment 
which introduces non-isotropic wave propagation, at both 
transmitter and receiver ends. The non-isotropic propaga- 
tion is described by non-uniform probability density func- 
tions (pdf) for the direction-of-departure (DOD) and the 
direction-of-arrival (DOA) of the outgoing/incoming prop- 
agating waves f rodto stations. The propagation patterns 
of antenna elements (and the effect of mutual coupling be- 
tween them) are also described by the Fourier series expan- 
sion of antenna propagation patterns. The expression of the 
cross-correlation function (CCF) turns out to be a linearex- 
pansion of a number of Bessel functions of the first kind. 
The coefficients of this expansion are given by linear convo- 
lution of the Fourier series coefficients (FSC) of the corre- 
sponding antenna patterns and the FSCs of the correspond- 
ing pdf of the non-isotropic propagation directions. The 
Fourier analysis on the CCF shows impacts of non-isotropic 
environment and non-omnidirectional antennas on the spec- 
trum of the received channel process while the maximum 
Doppler frequency shift remains invariant with variations 
of beam-patterns and the pdf of propagating waves. 

1. INTRODUCTION 

MuItiple-Input Multiple-Output (MIMO) communication 
system is a promising solution for wireless applications. 
The accurate and simple space-time-frequency (STF) wave 
propagation models have a major role to efficiently design a 
MIMO wireless system and to study its performance [ 11. An 
approach to characterize MIMO channels is to analyze the 
statistical behavior of the time-varying STF channel trans- 
fer function (TF) in terms of physical parameters of the ran- 
dom scattering media. In this approach, the channel TF is 
represented by a sum of propagating waves over a num- 
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with a response described by the pdfs of some random vari- 
ables. These random variables are phase, delay, direction- 
of-departure (DOD) and direction-of-arrival (DOA). In or- 
der to describe a non-isotropic propagation media, most of 
ex i shgMIM0 channel models assume a power density dis- 
tribution either for the received energy or for the received 
waveform of the propagating paths. This distribution is 
known as power azimuth spectrum (PAS) or azimuth an- 
gular spread ( U S )  for the distribution of the energy or the 
waveform, respectively. In the literature, these distributions 
are justified using experimental results [24 ] .  Martin in  [2] 
suggests a Laplacian (double-sided exponential) pdf for the 
relative DOA of the first multipath component, i.e., for the 
line-of-sight, and a zero-mean truncated Gaussian. pdf for 
the relative DOA variables associated with other paths. Ped- 
ersen, Mogensen and Fleury find that in fypical urban envi- 
ronments, PAS is accurately described by a taplacian func- 
tion, while a Gaussian function matches the shape of the 
AAS [3]. Abdi, Barger and Kaveh propose the use of the 
versatile von-Mises angular distribution for modeling the 
nonuniform AAS ai the mobile station (MS) [41. 

Here we calculate the cross-comefation function (CCF) of 
the MIMO channel TF  versus different time-indices and car- 
rier frequencies. We characterize the non-isotropic scatter- 
ing environment by the Fourier Series Coefficients (FSCs) 
of the pdf of the propagating directions distribution. We also 
consider the effect of the antenna patterns (and the mutual 
coupling between array elements) by the Fourier series ex- 
pansions (FSE) of the antenna propagation patlems (APP). 
Consequently, the CCF turns out to be a linear combination 
of the Bessel functions of the first kind. The coefficients of 
this linear combination are given by the convolutjon of the 
FSEs of the pdfs of both AASs and APPs. 

The rest of this paper is organized as follows: Notations 
and assumptions are introduced in Section 2. The space- 
time-frequency CCF is derived in Section 3 by considering 
the effect of the non-isotropic wave propagation and the ef- 
fect of the APPs. Conclusions and discussions are summa- 
rized in Section 4. 
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2. MlMO NON-ISOTROPIC CHANNEL 

In this section, we introduce OUT notations and assumptions 
for a MIMO wireless channel in a 2-dimensional(2D) non- 
isotropic random propagation media with omnidirecfional 
antenna arrays. Throughout this paper superscripts B and 
A l  indicate variables at the BS and the MS sides. 

Consider a moving MS with constant speed vector v( 2) 
and a fixed BS. Antenna elements are located on the 2D 
azimuth plane at MS and BS sides around their local co- 
ordinates, OB and 0". We assume a propagation pat- 
tern for each antenna element denoted by Gf(8'; w )  and 
G$(B"';w) at frequency w, for the pth antenna at the 
BS and the mth antenna at the MS, respectively, where 
OB LOB and 0" L O " .  The unity vectors OB and 
0" represent a propagation direction (DOD or DOA) at BS 
and MS, respectively. Antenna elements are addressed by 
position vectors a: and a: versus local coordinates. We 
also assume that propagating waves are planar [53. The 
inter-element scattering (the mutual coupling) is considered 
within the propagating patterns. We assume no line-of-sight 
since it can be separately considered. 

By breaking down the received waveform into a lin- 
ear combination of plane waves, we achieve a solution 
for Maxwell's equations. Each received waveform is as- 
sociated with a path attenuation gain gp,m;i, a path phase 
shift di, a time-varying delay ~ ~ , , + ( t )  and a complex 
gain composed of the antenna patterns at both BS and MS 
G:(8?; w)GE(B/:'; U), where and By are propagation 
directions associated with ith path. The APP GF(OB; U) 
and GE(BM; w )  are deterministic functions in terms of the 
propagation direction and the frequency. The STF channel 
TF between the pth BS antenna and the mth MS antenna is 
represented in terms of the carrier frequency as follows, 

k l n p ( W )  = ( 1 )  
I 

= GF(BB; U)G$(Q!f; w ) g p , m ; i e ( j d i - j P i t - j ~ ~ ~ , ~ : , )  

i=l 

where I is the number of dominant paths resulting from 
scattering, the Doppler shift mi = zvT8y denotes the fre- 
quency shift of the signal along the ith path caused by the 
Doppler effect, w is the carrier frequency, and v and c are 
the MS velocity vector and the speed of light, respectively. 

In this paper, we make the following statistical assump- 
tions on the physical parameters: 

A 
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Fig. 1. FSCs, Fk, to approximate Laplace and Normal dis- 
tributions in different propagation environments; Macrocel- 
lular (a  = 0.15rad) and Microcellular (a  = 0.7rad). 

A l )  The pdf of the propagation directions, f B ( d B )  and 
f M ( B M )  over [-T, T), characterize the non-isotropic 
propagation environment. Since these density func- 
tions are periodic with period of 2n, we can represent 
them by their FSE pairs as follows, 

Reported measurement results in literature [ 2 4 ,  6, 
71 suggest two candidates for these pdfs namely 
truncated-Normal and truncated-Laplace distributions. 
Table I gives these distributions along with their FSCs, 
where Re{ .} represents the real part of a complex vari- 
able, and erf(z) = % $ eFU2du defines the Error 
function for a complex argument [S, Page 2971. Fig- 
ure 1 compares the FSCs of these pdfs for two dif- 
ferent macrocellular and microcellular situations; a = 
O.15rad and a = 0.7rad, respectively. Let N, denotes 
the required number of FSCs in order to approximate 
the above pdfs with the required accuracy E ,  such that 
Vlc > N, : ]Fk] < c. Comparing the distributions in 
Figure 1, we see that the necessary number of FSCs 

for the Laplace pdf is N, = / c z r  2- - 1 M 

1 larger than the necessary number of FSCs for a= 
the Normal pdf N, = 

The complex APPs, G;(BB; w )  and GE(BM; U ) ,  give 
the response of antenna elements in terms of the prop- 
agation directions and the carrier frequency. These 
functions implicitly include the effect of the mutual 
coupling caused by the neighboring antenna elements 
[9, lo]. These pattern functions are all periodic func- 
tions of OB and 8" with the period 2.n. Therefore, we 

A 
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Fig. 2. Normalized Fourier Series Coefficients of Antenna Propagation Patterns, for four different commonly used 
antennas in wireless applications; (a) Half-Wavelength Dipole, (b) Microstrip Antenna, (c)  Vertical Electric Dipole and (d) 
Finite Length Dipole. FSCs are presented for different antenna sizes; h = hl = h2 E { 6;  $> S } .  

represent them by their FSE as folIows, 

where G 2 G ( ~ ; L J ) .  Table 2 presents the APPs of 
some commonly used antennas. The half-wavelength 
dipole and microstrip antenna are often used for 
MIMO applications [91. In this table, the parameters h, 
kl and kz are proportional with the size of the antenna 
and Go is the real constant and positive antenna gain 
that varies for each antenna. Figure 2 shows the FSCs 
of the underlined APPs when the carrier frequency is 
chosen to be f = 2GHz (w = 27rf), hl = h2 = h and 
h E { $,3, 3, f}. We observe that, for a11 these 
antennas the value of lSkl is considerable only for a 
limited number of coefficients. Also, we need more 
coefficients when the size of the antenna increases. 

A3) The path phase shifts &s in (1) appear in the form 
of e j Q i .  The correlations of over different paths, 
E[eJ(4il -di2)], have impact on the channel behav- 
ior. We assume that these correlations are non-zero 

A 

only for similar paths. Specifically, we assume that 
the value of E[ej(d11-@22)] is equal to tc2 for similar 
paths and is zero for dissimilar paths where the num- 
ber of similar paths for a specified path is limited by 
Isim < I. The softness factor, 6’ < 1, characterizes 
the effect of the environment on the phase correlation. 

A4) We decompose the ith path propagation delay, rp,m;i, 

into three components in the following form: 

(4a) B AI 
Tp,m;i = rt - (Tp;i + T m J >  

where T~ represents the distance delay between OB and 
O”, and 7Ei and T A ! ~  represent relative propagation 
delays from antenna elements, a: or a:, to corre- 
sponding coordinates, OB or On{. We assume i.i.d. 
Exponential distributions for time-delays, ri I1  11. This 
distribution is defined as ri N $ep *, V r  p-a, 
where p is the mean value to specify the distance be- 
tween MS and BS and U is the delay spread. The 
moment-generating-function (MGF) of the time-delay 
pdf is given by +7(s) = =. J*-o)a 
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Antenna Type 
Half-WaveIength 

APP, G(B; w ) ,  VB E [-n, T )  

Goj cos( cos e )  
Y Dipole 

A.5) When 1~il  B max  IT:^^, 1~h:~l}, we formulate path- 
gain as a function of time-delay as: 

4in B U 

where is the pathloss exponent (v = 2; free space 
propagation, r] = 4; rural and 7 = 6; crowded urban 
environments C121) and PO is a constant (see [5]). 

Microstrip 

Vertical blectric 
Dipole 

Finite Length 

Antenna 

Dipole 

3. CROSS-CORRELATION FUNCTION (CCF) FOR 
NON -ISOTROPIC PROPAGATION 

sin( $hl sin 0) sin( e h 2  cos 8 )  
-Goj m s  B 

Goj sin B [ a  cos (F k cos e)] 
cos( ~ h c o s 8 ) - c o s (  E h )  

GOj $in fl - 

Using above assumptions, we derive a closed-form expres- 
sion for the STF-CCF between channel TFs of two arbitrary 
communication links, hmp(t1, WI) and h,,(t2, ~ $ 2 ) .  This 
CCF is denoted by, 

and is a function of sampling times (tl, t 2 ) .  carrier frequen- 
cies ( w 1 ,  wa) and antenna elements (m, p; n, 4). By replac- 
ing ( I )  in (6), CCF Rmp,nq(tli t z ;  w1, w2) is written as, 

By regrouping dependent and independent random vari- 
ables in (7), replacing gi from (5) and using Assump- 
tions Al-A5, the expression of the CCF is decomposed as, 

Euclidian norm, respectively. In Assumption A4, we con- 
sider Exponential distribution for the delay profile (DP). By 
integrating the MGF, aT(s), qth-times, we obtain the ex- 
pression of +$)(s) as given in [SI. We call the vectors dt,,,  
and dr.,  as the separation vectors. These separation vec- 
tors illustrate the impact of the location of antennas, the time 
indices and the carrier frequencies and the mobile speed at 
BS and MS on the CCF, respectively. The norm of these 
vectors (divided by e) are the arguments of the Bessel func- 
tions. Therefore, these norms represent a combination of the 
spatial, the temporal and the frequency separations between 

In [ 131 we present the Fourier analysis o f  the derived CCF 
for a narrowband communication system w1 = w2 = w, 

h m p ( t 1 , W l )  and hnq(tz ,u2) .  
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when K = 0 and we employ one antenna in the MS side. 
Figure 3 shows the impact of non-isotropic propagation and 
non-omnidirectional antenna in comparison with isotropic 
propagation with omnidirectional antenna. The results are 
shown for a = 0.44. 

and FSCs of the APP. We also show impacts of non- 
isotropic environment and non-omnidirectional antennas on 
the spectrum of the received channel process while the max- 
imum Doppler frequency shift remains invariant with varia- 
tions of beam-patterns and the pdf of propagating waves. 

(a) Omnidirectional Antenna 

I 

(b) Half-Wavelength Dipole 

(c) Microstrip Antenna 

Fig. 3. Normalized Power Spectral Density (PSD) for Sta- 
tionary CCF and moving MS on the positive direction of the 
x-axis: (a) Omnidirectional antenna, (b) Half-Wavelength 
Dipole and (c) Microstrip Antenna. 

4. CONCLUSIONS 

The non-isotropic scattering introduces a linear combina- 
lion of Bessel functions of different orders to represent 
the spatial-temporal-frequency seIectivities of the CCF. The 
weights of Bessel functions come from FSCs of the A A S  
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