
A 3D Correlation Model for MIMO Non-Isotropic
Scattering with Arbitrary Antenna Arrays

Hamidreza Saligheh Rad and Saeed Gazor
Department of Electrical and Computer Engineering

Queen’s University, Kingston, Ontario, K7L 3N6, Canada
Tel: (613) 533-6068, Fax: (613) 533-6615

radh,gazors@ee.queensu.ca

Abstract—In this paper we introduce a Multiple-Input
Multiple-Output (MIMO) space-time-frequency wireless channel
model for the wave propagation in the three-dimensional (3D)
space. The Cross-Correlation Function (CCF) between two sub-
channels of the MIMO communication system is decomposed
into some non-negative functions. These functions are expressed
in terms of a selection of channel parameters such as the carrier
frequencies, the delay profile, the pathloss exponent, the softness
factor θ, the non-uniform distribution of direction of arrivals and
departures, array geometries, and the mobile speed. We introduce
a class of distributions for the Elevation Angle (EA) spreads as
a basis such that any arbitrary (isotropic or non-isotropic) EA
distribution can be represented by a convex linear combination
of this class. The corresponding term of the CCF of the 3D-
MIMO model for any EA distribution equals to the same linear
combination of the basis CCF terms associated to the class. This
3D-MIMO model formulates the CCF as a function the spacial
separation of antennas, time, and carrier frequencies in terms of
physical channel parameters such as mobile speed, delay profile
and distribution of scavengers around mobile and base station.
Keywords:Wireless channel modeling, Cross-Correlation Func-

tion, 3D Non-Isotropic Wave Propagation.

I. INTRODUCTION
Space-Time (ST) channel models are required to evaluate

the performance of a Multiple-Input Multiple-Output (MIMO)
communications system in the presence of fading(s). Existing
MIMO channel models are usually either idealistically simple
or too complicated for such an analysis. Moreover, most of
existing MIMO models assume wave propagation in a two-
dimensional (2D) space, and consider a special geometry
(usually one-ring [2], [3]) for the local scatterers, combined
with appropriate probability density functions (PDFs) for the
physical parameters.
In this paper, we introduce a 3D-MIMO model by con-

sidering a series expansion for any spatial distribution of
scatterers around the Mobile Station (MS) and the Base Station
(BS), allowing characterization of various environments, e.g.,
macro-microcellular, isotropic or non-isotropic, flat-fading or
frequency-selective, spherical or cylindrical scattering distribu-
tion. We specifically calculate the Cross-Correlation Function
(CCF) of two sub-channels between two pairs of antenna
elements in the MS and the BS [4], [6], assuming any given.
We use the Fourier series expansion of the PDF of the non-
isotropic azimuth of arrivals and departures and a general EA
distribution in the third dimension in order to characterizers
various 3D non-isotropic environments. This model can be

used in the design and the performance evaluation of wireless
communication systems.
Several researchers have recently proposed for 3D channel

models for Single-Input Single Output (SISO) and MIMO
communication systems, e.g., [8]–[16]. Aulin introduced a 3D-
SISO channel model [8]. He assumed that the spatial angle
of arrival in the horizontal plane is uniformly distributed in
all directions, and is non-uniformly distributed for vertical
angle of arrival. This model fits better to the empirical results
compared with the two-dimensional (2D) model proposed in
[20]. Turkmani and Parsons [9], [10] suggested a more realistic
scatterer distribution for vertical angle of arrival. They derived
an expression for the spatial CCF between antenna elements
in the BS, and evaluated the impact of various physical
parameters. Falconer and Roy [11] proposed a wideband 3D-
model based on [9], [10] considering the beam-pattern of BS
antenna elements. Qu and Yeap [12] suggested a family of
PDFs with two parameters, for symmetrical and asymmetrical
distributions of the elevation angle (EA). Some of these PDFs
lead to analytical expressions for the Power Spectral Density
(PSD) of the channel. A combination of these PDFs allow
modeling of a wide range of environments. Fitz and Mohasseb
[13] proposed a 3D generalization of the Jake’s model [20] for
a MIMO system based on a geometrical distribution of scat-
terers and ideas from [8]–[10]. Theses models consider many
relevant physical parameters; however, they mostly assume a
specific geometry of scatterers in the environment. Moreover,
the integral expression of the CCF for these methods needs to
be numerically evaluated. Abhayapala, Pollock, and Kennedy
[14] developed a 3D spatial channel model to provide insight
into spatial aspects of MIMO systems. They used the spher-
ical harmonic representation wavefields to decompose spatial
channel matrix into a product of known and random matrices
where the known portion shows the effects of the physical
configuration of antenna elements. Yong and Thompson [15]
derived an spatial fading correlation function for a Uniform
Rectangular Array (URA) and a 3D multipath channel. This
CCF is expressed in terms of azimuth and elevation angles
of arrivals and the geometry of the array. Results demonstrate
that azimuth spread (AS) is one of the primary determinant
of the antenna correlation and the impact of the elevation
spread is mainly noticeable at low AS values. Yao and Patzold
[16] investigated the spatial-temporal characteristics of a 3D
theoretical channel model for scatterers which form a half-
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Fig. 1. pth (qth) antenna element of BS and mth (nth) antenna element
of MS in their local coordinate axis in a 3D wave propagation environment.
The ith transmitting direction ΨB

i (ith receiving direction ΨM
i ) from the

ith dominant propagating waveform between this antenna pair is also shown.

spheroid with a given axial length ratio. In this paper, we
extend the 2D-MIMO model proposed by Gazor and Rad [4],
[6] into a realistic 3D-MIMO model.
In Section II, the notations are defined and assumptions

on the parameters of the propagation media are described.
The proposed 3D ST CCF is calculated in Section III, in
the presence of Doppler fading and environment correlation.
We use family of PDFs such that any PDF for the EA can
be expressed by a linear convex combination this family of
distributions, and derive the CCF as the same linear combi-
nation of CCFs associated to these PDFs, allowing accurate
modeling for various wireless propagation environments. The
discussions and conclusions are made in Section IV.

II. THREE-DIMENSIONAL MIMO MODEL DESCRIPTION
A pair of BS-MS antenna elements from a multielement

antenna communication system in a 3D wave propagation
environment is shown in Figure 1. Throughout this paper the
following notations are used where the superscripts B and M
indicate variables at the BS and the MS sides respectively:
OB, OM BS coordinate, MS coordinate;
ω Carrier frequency;
hmp(t, ω) Channel Impulse Response (CIR) between pth

BS antenna and mth MS antenna;
bp Position vector of the pth antenna element on the

BS side relative to OB;
mm Position vector of the mth antenna element on

the MS side relative to OM ;
v, c MS speed vector, Wave propagation velocity;
ΨB
i Unity vector pointing to the Direction of Depar-

ture (DOD) of the ith waveform from the BS;
ΨM
i Unity vector pointing to the Direction of Arrival

(DOA) of the ith waveform to the MS;
ΘBi The ith DOD azimuthal angle from the BS;
ΘMi The ith DOA azimuthal angle to the MS;
ΩBi The ith DOD elevation angle from the BS;
ΩMi The ith DOA elevation angle to the MS;
τp,m;i Delay between pth BS antenna element and mth

MS antenna element via ith dominant path;
gp,m;i Gain between pth BS antenna element and mth

MS antenna element via the ith dominant path,
approximated by gi;

'i The shifted frequency for the ith dominant path,
caused by the Doppler effect;

φi Phase contribution along the ith dominant path;
θ, η Softness factor, Pathloss exponent;
τ , σ2 Mean and Variance of the time-delay τi; and,
α, I Degree of Urbanization, Number of total waves.

Note Ψi
∆
= [cos(Ωi) cos(Θi), cos(Ωi) sin(Θi), sin(Ωi)]

T [24].
Consider a moving MS with the constant speed v( msec ) and a
fixed BS in Figure 1. Antenna elements are arbitrarily located
in the 3D space at the MS and BS sides around their local
coordinates, OB and OM . We assume that the antennas are
omnidirectional and are addressed by position vectors with
respect to their local coordinates, e.g., bp and mm. We also
assume that propagated waves are planar. This assumption
is justified provided that the distance between scatterers and
antenna arrays is much larger compared to the inter-element
antenna distances [1, Page 75]. Such assumption implies that
there is no inter-element scattering, i.e., DODs and DOAs
do not depend on the antenna indices. Each array antenna
element mm receives the signal through the media via a
large number of dominant propagating paths with different
lengths. The Line-Of-Sight (LOS) propagation path between
the transmitter and the receiver can be deterministically treated
[3]. We assume no LOS. In addition, we assume identical
PDFs for physical parameters in all directions in space.
By breaking down the received waveform into a linear

combination of plane waves, we can achieve a solution based
on Maxwell’s equations [1], [23]. Each component in this
equation is the direct result of scattering effect in the prop-
agation environment; each received waveform is associated
with a path attenuation gain gp,m;i and a path phase shift φi.
The path gain represents pathloss and the fading effects of
the propagation waves along the path. The path phase change
represents the contribution of the path on the phase of the
received signal. CIR of such a process is represented as a
function of the carrier frequency as,

hmp(t, ω)
∆
=

IX
i=1

gp,m;i exp (jφi − jωτp,m;i(t)) , (1)

where I is the number of dominant paths resulting from
scattering, τp,m;i(t) is the time-delay over ith path and gp,m;i
is the real gain of the ith dominant path between bp and
mm. The gain, gp,m;i, is a function of the time-delay and
the slow fading factor [3], [19]. The propagation delay over
ith path, τp,m;i(t)

∆
= τp,m;i +

t
cv

TΨM
i , is time-varying due

to the mobility of MS. Substituting the time-varying delay in
(1), CIR of such a propagation environment is represented by,

hmp(t, ω) =
IX
i=1

gp,m;i exp (jφi − j'it− jωτp,m;i) , (2)

where the shifted frequency of the ith received waveform
caused by the Doppler effect is denoted by Doppler shift
'i

∆
= ω

c v
TΨM

i , ω is the carrier frequency, and v and c are
the MS velocity vector and the speed of light, respectively.
Notation φi is the phase change of the signal along the ith

path. Time dependency of hmp(t, ω) is mainly due to the effect
of user mobility, i.e., the Doppler effect [1]. The term 1√

I
is

introduced to retain a constant energy random process, i.e.,
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to guarantee the convergence of I−1
PI

i=1E[g
2
i ] as I →∞.

In this paper we make some statistical assumptions on the
physical parameters of 3D propagation environment [4], [6].
A1) We decompose the ith path propagation delay, τp,m;i,

into three components: one major distance delay, and
two relative propagation delays with respect to local
coordinates across the BS and MS antenna arrays. This
delay can be written in the following form

τp,m;i = τi − (τBp;i + τMm;i), (3a)

τBp;i
∆
=

bTpΨ
B
i

c
, (3b)

τMm;i
∆
=

mT
mΨ

M
i

c
, (3c)

where τi represents distance delay between OB and
OM , and τBp;i and τMm;i represent relative propagation
delays from antenna elements, bp or mm, to corre-
sponding coordinates [19]. We consider independent
identically distributed (i.i.d.) Exponential pdf for the
distance delay τi as a common delay distribution for
outdoor environments [2]. This distribution is defined as
τi ∼ 1

σe
−x−τ+σ

σ , ∀x > τ−σ, where τ is the mean value
to specify the distance between the MS and BS (major
propagation distance), and σ2 is the variance of this
distribution. The moment-generating-function (MGF) of
the time-delay pdf is given by:

Φτ (s) =
e(τ−σ)s

1− σs
. (4)

A2) Path gain, gp,m;i, and propagation delay, τp,m;i, are
random parameters and are functions of path length.
The relationship between gp,m;i and the average pathloss
power, P (τp,m;i), is justified by experimental mea-
surements to be gp,m;i

∆
=
q

P (τp,m;i)
I [19], [21]. The

shadowing effect or slow fading is not considered in
this paper. By experimental measurements it is found
that the dependency of the pathloss on the time-delay,
τp,m;i, is characterized by [22, Page 38]

P (τp,m;i)
∆
= P0 (τp,m;i)

−η , (5)

where η is called pathloss exponent, and P0 is a
constant. Depending on the propagation media, the
pathloss exponent is measured between 2 and 6 [22],
[23]. From (5), (3a) and the obvious fact that |τi| À
max

©|τBp;i|, |τMm;i|ª, we approximate P (τp,m;i) ' P (τi)
for all the BS and MS antennas as:

gp,m;i ' gi =

r
P0
I
(τi)
−η

2 . (6)

A3) We consider the phase contribution of surrounding scat-
terers by a random phase change, φi ∼ U [−π, π). It
makes sense to impose some restriction to the phase
differences of similar paths δ = φi1 − φi2 [4]. These
phase changes are assumed to be independent. For two
similar paths i1 and i2, we assume a pdf for δ = φi1−φi2
as: pδδδ(δ) ∼ U [−θ, θ) ⊗ U [−θ, θ), where ⊗ stands for
the circular convolution. The softness factor, θ ∈ [0, π),

characterizes the effect of the environment on the phase
change correlation. The number of such similar paths
for a given path is limited by Isim < I.

A4) The general form for the azimuth angular distribution;
ΘBi and ΘMi , are defined over [0, 2π). The pdf of such a
distribution is represented by fΘΘΘi(Θi), whereΘi

∆
= ∠Θi

[7]. This general distribution is expanded based on the
fourier series expansion of periodic signals with period
2π, fΘΘΘi(Θi) = fΘΘΘi(Θi + 2π) [24]:

fΘΘΘi(Θi) =
+∞X
l=−∞

Al e
jlΘi , (7a)

where,

Al
∆
=
1

2π

Z π

−π
fΘΘΘi(Θi)e

−jlΘidΘi. (7b)

Without loss of generality, we assume a real-positive
and even function for the angular distribution. It implies
that the coefficients Al are real and even; i.e., Al = A∗l
and Al = A−l [24]. Using these properties, we will
calculate and simplify the CCF in the next section.
Exact empirical verifications are necessary in order to
choose the appropriate shape of the azimuth PDF for
the specified propagation scenario. Based on some valid
measurement results and the fourier series analysis, in
[7] we present a complete investigation on the Normal
and Laplace azimuth distributions with a limited number
of sinusoidal components. In addition, we assume that
azimuth DODs and DOAs are independent from each
other and from time-delays, τp,m;i [2], [3].

A5) The Elevation Angles are all independent and identically
distributed pΩ(Ω). It is clear that the majority of incom-
ing/outgoing waves do travel in nearly horizontal direc-
tions. The determination of the EA distribution of such
waves requires some considerations as it depends on the
environment parameters like the degree of urbanization
[9]. This determination has attracted the attention of
some theoretical/experimental researchers [8], [9], [12],
[17], [18]. Aulin in [8] and Parsons and Turkmani in
[9] suggest realistic PDFs for EA in a microcellular
scattering environment. These PDFs do not result in
closed-form or easy to handle expressions for the CCF
in the case of MIMO systems. Qu and Yeap [12] suggest
a family of PDFs with two parameters for both the
symmetrical and asymmetrical PDFs of the EA. Some
of the PDFs lead to analytical solutions for the PSD
of the received signal in a SISO system. Kuchar, Rossi
and Bonek [17] measure the angular power distribution
at the mobile station in downtown Paris at 890 MHz.
According to this work, propagation over the roofs is
significant; typically 65% of energy is incident with
elevation larger than 10◦. Authors of [18] measure the
EA distribution at a mobile station in different radio
propagation environments at 2.15GHz. Results show that
in non-LOS situations, the power distribution in eleva-
tion has a shape of a double-sided exponential function,
with different slopes on the negative and positive sides
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of the peak. The slopes and the peak elevation angle
depend on the environment and the BS antenna height.
In order to satisfy the requirements for a PDF of realistic
EAs previously proposed in the literature, we consider
a simple family of distributions for |Ω| 6 π

2 as [5]

Case I: pΩ(Ω) =
Γ(α+ 1)cos2α(Ω)√

π Γ(α+ 1
2)

, (8a)

Case II: pΩ(Ω) =
2| sin(Ω)|2α cos(Ω)

2α+ 1
, (8b)

where Γ(z) =
R∞
0 uz−1e−udu is the Gamma function

[24, Page 258], and α > 0 is related to the degree
of urbanization. The parameter α specifies the type of
the environment in the sense that the amount of waves
scattered into the third dimension of the space. Selected
distributions is a general class of functions suggested
in [5]. Interestingly, a linear convex combination of the
members of this class as a PDF covers a wide class of
distributions and can realistically model a non-isotropic
environment. Therefore, a linear convex combination
of obtained results characterizes a wide class of non-
isotropic propagation in the elevation. Experimental data
can be used to interpolate for the calculation of the
coefficients of this linear combination.

III. THREE-DIMENSIONAL SPACE-TIME
CROSS-CORRELATION FUNCTION

Based on established assumptions in the previous section,
we derive a closed-form expression for the ST-CCF between
the CIRs of two arbitrary communication links, hmp(t1, ω1)
and hnq(t2, ω2). This CCF is denoted by [4]

Rmp,nq(t1, t2;ω1, ω2)
∆
= E[hmp(t1, ω1) h

∗
nq(t2, ω2)], (9)

and is a function of sampling times (t1, t2), carrier frequencies
(ω1, ω2) and antenna elements (m, p;n, q).
By replacing (2) and (3) in (9), the ST-CCF between two

sub-channels, CCF is written as follows

Rmp,nq(t1, t2;ω1, ω2) = E
h IX
i1,i2=1

g(p,m; i1)g(q, n; i2)× (10a)

×ej(ω1τi1−ω1τi1+φi1−φi2 )zi1z∗i2
i
,

where,

zi1
∆
= ej('i1t1+

ω1
c {bTpΨBi1+m

T
mΨ

M
i1
}), (10b)

zi2
∆
= ej('i2t2+

ω2
c {bTq ΨBi2+m

T
nΨ

M
i2
}), (10c)

and 'i1
∆
= ω1

c v
TΨM

i1
and 'i2

∆
= ω2

c v
TΨM

i2
are shifted

frequencies [4], [6].
By regrouping dependent and independent random variables

in (10a), replacing gi from (6), and using Assumptions A1-4,
the expression of the CCF in (10), Rmp,nq(t1, t2;ω1, ω2), is

decomposed as follows

Rmp,nq(t1, t2;ω1, ω2) = (11)

P0
I

IX
i1,i2=1

n
E
h
(τi1τi2)

−η
2 ej(ω2τi2−ω1τi1)

i
×E [exp(j(φi1 − φi2))]E

£
zi1z∗i2

¤o
.

In [4, Appendix I], each term in the above double-sum is
calculated for a 2D wave propagation scenario. Similarly,
after calculating the parts that do not depend on the angular
distributions, we obtain

Rmp,nq(t1, t2;ω1, ω2) = (12a)
= P0Π

B
p,qΠ

M
m,nΦ

(η)
τ (j(ω2 − ω1))+

+
P0 sin

2 θ

θ2
ΠBp Π

B
q Π

M
mΠ

M
n IsimΦ

( η2 )
τ (−jω1)Φ(

η
2 )

τ (jω2),

where Φ(η)τ (s) is obtained by ηth-times integrating the MGF,
Φτ (s) [24]. In Assumption A1, we consider Exponential
distribution for the delay profile. The expressions of Φ(η)τ are
given in [4] by performing these integration on Φτ (s). The
values Π(.)(.) are calculated in terms of the following 3D vectors,

dBp,q
∆
= ω1bp − ω2bq , (12b)

dMm,n
∆
= (ω1t1 − ω2t2)v+ (ω1mm − ω2mn) ,

dBp
∆
= ω1bp , dBq

∆
= ω2bq , (12c)

dMm
∆
= ω1t1v+mm , dMn

∆
= ω2t2v+mn ,

by employing the above superscripts, B or M and subscripts
indices for d(.)(.) = [dx, dy, dz]

T , in the following functions,

Π
∆
= EΩ

h
eΛ1 sin(Ω)Υ (Λ2 cos(Ω))

i
, (12d)

Υ(z)
∆
= J0(z) + 4π

∞X
l=1

Alj
lJl(z) cos l(arctan

dy
dx
),

Λ1
∆
=

dz
c

and Λ2
∆
=

p
(dx)2 + (dy)2

c
, (12e)

where Jl(z)
∆
= j−l

π

R π
0 ejz cosu cos(lu)du is the lth-order

Bessel function of the first kind [24, Page 360], |.| denotes
the Euclidian norm, and Al is defined in the Assumption A4,
EΩ[.] is the expectation of [.] using the PDF of Ω. Parameters
dB(.) and dM(.) represent shifted distances at the BS and MS
respectively [4], [6].
Remark 1: This model proposes the CCF between any two

sub-channels of a 3D-MIMO wireless propagation environ-
ment when DODs and DOAs are non-uniformly distributed
in both azimuth and elevation. In other words, the above
CCP represents one of the elements of the channel correlation
matrix.
Remark 2: The proposed 3D model takes into account the

antenna heights [13]. The vertical separation of antenna ele-
ments is the result of their different heights. Such a difference
in the antenna heights produces phase differences between the
received or transmitted signals and consequently impact on
the CCF. This property can be employed to improve the space
diversity in wireless systems [23].
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Remark 3: The CCF in the form of (12) appears in a linear
convex series expansion form of Bessel functions of the first
kind. This coefficients of this expansion are obtained by the
fourier series expansion of the PDF of the azimuth angular
spread. In practice for any common non-uniform azimuth
distribution such as Normal and Laplace distributions, the
underlined expansion is very well approximated by a limited
number of its most important components. Thus, a summation
only most important components should be enough to accu-
rately represent any practical non-isotropic environment.
In general, the terms Π(.)(.) have not closed-form expression.

In Appendix I, we propose a computation method for the
expectation integral Π. This solution is based on an expansion
series of Bessel functions of the first kind. If there is no closed-
form expression for CCF, this method can be numerically
approximated. Following, we find closed-form solutions under
some particular simplified conditions. These expressions give
insight and physical interpretations for the derived equations.

Case I, α = 0, dz = 0
This case represents a uniform 3D rich scattering environ-

ment. Using the following Bessel integration [24, Page 485]:Z π
2

0

J2n (2zsin(ξ)) dξ =
π

2
J2n(z) ,

in (12), we get

Π =
∞X
l=0

J22l

µ
d

2c

¶
. (13)

This result is similar to the 2D scenario [4]; however, the 3D
case introduces powers of the Bessel function [14]. This model
is a direct 3D extension of the Jake’s/Clark model [20].
In the following two cases closed-form CCFs are introduced

for the isotropic scattering in azimuth when DODs and DOAs
are uniformly distributed over [0, 2π).

Case II, α = 1
2 , dz = 0

In this case scatterers are uniformly distributed on a sphere.
Using the following Bessel integration expression [24, Page
485]:Z π

2

0

Jζ (z sin(ξ)) sin
ζ+1(ξ) cos2ν+1(ξ)dξ =

=
2νΓ(ν + 1)

zν+1
Jζ+ν+1(z), Re(ζ) > −1,Re(ν) > −1,

we obtain
Π =

r
π

2Λ2
J 1
2
(Λ2) . (14)

Using J 1
2
(z) =

q
2
π
sin(z)√

z
[24, Page 437], the expression in

(14) results in

Π =
sin(Λ2)

Λ2

∆
= sinc (Λ2) . (15)

This result is consistent with the available literature on
isotropic 3D-SISO propagation [14].

Case III, dx = dy = 0

This case studies the vertical separation of antenna ele-
ments in a microcellular propagation environment. All antenna
elements are located on the z-axis. In this case, using the
following Bessel integration [24, Page 360]:

Jν(z) =
(12z)

ν

√
π Γ(ν + 1

2)

Z π

0

cos (z cos(ξ)) sin2ν(ξ)dξ ,

we obtain
Π =

Γ(α+ 1)

(12Λ1)
α

Jα (Λ1) , (16)

where α represents the degree of urbanization. This case
characterizes different propagation environments by the degree
of urbanization α.

Case IV, dz = 0
Using (8b) and the Bessel integration [24, Page 485], we

get

Π =
2α+

3
2Γ(α+ 1

2)

(2α+ 1)(Λ2)α+
1
2

Jα+ 1
2

¡
ΛB2
¢
. (17)

This simple expression is another extension for the Jake’s
model for isotropic scattering environment.

IV. CONCLUSIONS
In this paper, we presented a cross-correlation model for

MIMO wireless systems in the 3D space with respect to
space, time and frequency. The resulting CCF between any
two sub-channels of the MIMO communication system is
composed of a summation of two non-negative terms; each
term is decomposed into a multiplication of some non-negative
functions. Each function describes (and provides insight about)
the impact of some of key parameters of the physical prop-
agation environment and communication system; e.g., the
carrier frequencies, the array geometries at MS and BS, the
non-uniform angular spread on azimuth and elevation, the
delay profile, the path-loss exponent, the softness factor and
the mobile speed. This decomposition/separation is a very
flexible model to fit various practical MIMO channels and
can charachterize formulate different propagation scenarios
such as flat-fading or frequency-selective environments, micro-
macrocellular scenarios, spherical or cylindrical wave propa-
gation, etc [5]. Two of these multiplicative correlation terms
are obtained by (η)-order and (η/2)-order integral of the MGF
of the delay profile at the carrier frequency offset and at two
carrier frequencies, respectively, where η is the environment
pathloss exponent. Two other functions, ΠB and ΠM , describe
the spatial effects of the BS and the MS, respectively. In
general, resulting integrals do not have closed-form solutions.
We obtained closed-form expressions of the CCF for a family
of EA distributions. Since the PDF of EA can be expressed
accurately by a linear convex combination of members of this
class, the resulting CCF is exactly expressed in by the same
linear combination in the form of a Bessel series expansion. In
Appendix I a method for calculation of two expectation terms
of CCF is given. This method allows to calculate the CCF for a
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microcellular scenario. These terms represent the impact of the
third spatial dimension of the propagation environment on the
behaviour of the channel response. In Section III, closed-form
expressions are derived for important cases in a 3D environ-
ment. Results of this paper are easy-to-use and mathematically
tractable for simulation purposes and analytical analysis. This
model also gives a better understanding of the complicated 3D
non-isotropic propagation media.

APPENDIX I
GENERAL SOLUTION FOR THE 3D NON-ISOTROPIC CCF
In this Appendix, we calculate the integral Π for any non-

isotropic scattering environment. This solution is given based
on a polynomial series expansion of Bessel functions of the
first kind. Using the following ascending series formula [24,
Page 360],

Jν(z) = (
1

2
z)ν

∞X
k=0

(−14z2)k
k!Γ(ν + k + 1)

, (18)

for a lth-order Bessel function, we get

Π = 4πΛ3

∞X
l=0

(
1

2
Λ2)

lAlj
l cos(lψ)

∞X
k=0

¡−14(Λ2)2¢k
k!Γ(l + k + 1)

× (19)

×
Z
Ω

cos (Λ1 sin(Ω)) cos
2k+2α+l(Ω)dΩ

where Λ1 and Λ2 are defined in (12c) in terms of d(.)(.) =

[dx, dy, dz]
T , and Λ3

∆
= Γ(α+1)√

π Γ(α+ 1
2 )
is a constant number

defined by the complete gamma function. We calculate integral
term in (19), using the following Bessel integration expression
[24, Page 360]:

Jν(z) =
(12z)

ν

√
π Γ(ν + 1

2)

Z π
2

−π
2

cos(z sin ξ) cos2ν ξ dξ , (20)

and obtain,

Π = 4π
Γ(α+ 1)

Γ(α+ 1
2)
¡
1
2Λ1

¢α J l
2+k+α

(Λ1)× (21)

×
∞X
l=0

∞X
k=0

Λl2Alj
l cos(lψ) Γ( l+12 + k + α)(−Λ22)k(12)k+

l
2

k!Γ(l + k + 1)(Λ)k+
l
2

,

Note that A0 = 1
4π and ψ = arctan(

dy
dx
).

REFERENCES

[1] G. Durgin, Space-Time Wireless Channels, NJ: Prentice Hall,
2003.

[2] M. Kalkan and R. H. Clarke, “Prediction of the Space-Frequency
Correlation Function for Base Station Diversity Reception,”
IEEE Transactions on Vehicular Technology, vol. 46, no. 1, pp.
176-184, Feb. 1997.

[3] A. Abdi and M. Kaveh, “A Space-Time Correlation Model for
Multielement Antenna Systems in Mobile Fading Channels,”
IEEE Journal on Selected Areas in Communications, vol. 20,
no. 3, pp. 550-560, April 2002.

[4] S. Gazor, and H. S. Rad, “Delay-Frequency Characterization of
MIMO Wireless Channels,” under review, IEEE Transactions on
Wireless Communications, April 2004.

[5] H. S. Rad, S. Gazor, K. Shahtalebi, “Spatial-Temporal-
Frequency Decomposition for 3D MIMO Microcell Uncorre-
lated Wireless Channels,” Canadian Conference on Electrical
and Computer Engineering 2004 (CCECE’04), Niagara Falls,
May 2004.

[6] H. S. Rad, and S. Gazor, “MIMO Space-Time Correlation
Model for Microcellular Environments,” Fifth IEEE Workshop
on Signal Processing Advances in Wireless Communications,
Lisboa, Portugal, July 11-14, 2004.

[7] H. S. Rad, and S. Gazor, “Non-Isotropic Wave Propagation
in MIMO Wireless Environments,” submitted to IEEE Interna-
tional Conference on Communications, ICC’05, August 2004.

[8] T. Aulin, “A Modified Model for the Fading Signal at a Mobile
Radio Channel,” IEEE Transactions on Vehicular Technology,
vol. VT-28, no. 3, pp. 182-203, August 1979.

[9] J. D. Parson, and A. M. D. Turkmani, “Characterisation of
Mobile Radio Signals: Model Description,” IEE Proceedings I,
Communications, Speech and Vision, vol. 138, no. 6, pp. 549-
556, December 1991.

[10] ——, “Characterisation of Mobile Radio Signals: Base Station
Crosscorrelation,” IEE Proceedings I, Communications, Speech
and Vision, vol. 138, pp. 557-565, December 1991.

[11] S. Roy, and D. D. Falconer, “A Three-Dimensional Wideband
Propagation Model for the Study of Base Station Antenna Arrays
with Application to LMCS,” VTC’98, Ottawa, August 1998.

[12] S. Qu, T. Yeap, “A three-dimensional scattering model for
fading channels in land mobile environment,” IEEE Transactions
on Vehicular Technology, no. 3, vol. 48, pp. 765-781, May 1999.

[13] Y. Z. Mohasseb, and M. P. Fitz, “A 3D Spatio-Temporal
Simulation Model for Wireless Channels,” IEEE Journal on
Selected Areas in Communications, vol. 20, no. 6, August 2002.

[14] T. D. Abhayapala, T. S. Pollock, and R. A. Kennedy, “Char-
acterization of 3D Spatial Wireless Channels,” VTC 2003-Fall,
vol. 1, pp. 123-127, 2003.

[15] S. K. Yong, J. S. Thompson, “A three-dimensional spatial fading
correlation model for uniform rectangular arrays,” Antennas and
Wireless Propagation Letters, no. 12, vol. 2, pp. 182-185, 2003.

[16] Q. Yao, M. Patzold, “Spatial-Temporal Characteristics of a Half-
Spheroid Model and its Corresponding Simulation Model,” VTC
2004-Spring, Milan.

[17] A. Kuchar, J.-P. Rossi, and E. Bonek, “Directional macro-
cell channel characterization from urban measurements,” IEEE
Transactions on Antennas and Propagation, no. 2, vol. 48, pp.
137-146, Feb. 2000.

[18] K. Kalliola, K. Sulonen, H. Laitinen, O. Kivekas, J. Krogerus,
P. Vainikainen, “Angular power distribution and mean effective
gain of mobile antenna in different propagation environments,“
IEEE Transactions on Vehicular Technology, no. 5, vol. 51, pp.
823-838, Sept. 2002.

[19] M. Stege, J. Jelitto, M. Bronzel and G. Fettweis, “A Multiple
Input - Mutiple Output Channel Model for Simulation of Tx
and Rx Diversity Wireless Systems,” 52nd IEEE Conference on
Vehicular Technology, vol. 2, pp. 833-839, 2000.

[20] W. C. Jakes, Ed., Microware Mobile Communications, New
York: Wiley, 1974.

[21] H. L. Bertoni, Radio Propagation for Modern Wireless Systems,
Prentice Hall PTR, 1999.

[22] T. S. Rappaport, Wireless Communications - Principles and
Practice, Prentice Hall PTR, 1996. pp. 311-335, March 1998.

[23] S. Saunders, Antennas and Propagation for Wireless Commu-
nication Systems, New York: Wiley, 1999.

[24] M. Abramowitz, and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Table,
Dover Publications INC., NY, June 1974.

IEEE Communications Society / WCNC 2005 943 0-7803-8966-2/05/$20.00 © 2005 IEEE


	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       
	nd: nd
	header: Proceedings of the 2   International IEEE EMBS Conference on Neural Engineering                      Arlington, Virginia · March 16 - 19, 2005
	footer: 0-7803-8709-0/05/$20.00©2005 IEEE


