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Simultaneous Magnetic Resonance Diffusion and Pseudo-
Diffusion Tensor Imaging

Meghdoot Mozumder,1* Leandro Beltrachini,1 Quinten Collier,2 Jose M. Pozo,1 and

Alejandro F. Frangi1

Purpose: An emerging topic in diffusion magnetic resonance is

imaging blood microcirculation alongside water diffusion using the
intravoxel incoherent motion (IVIM) model. Recently, a combined

IVIM diffusion tensor imaging (IVIM-DTI) model was proposed,
which accounts for both anisotropic pseudo-diffusion due to blood
microcirculation and anisotropic diffusion due to tissue microstruc-

tures. In this article, we propose a robust IVIM-DTI approach for
simultaneous diffusion and pseudo-diffusion tensor imaging.
Methods: Conventional IVIM estimation methods can be broadly

divided into two-step (diffusion and pseudo-diffusion estimated
separately) and one-step (diffusion and pseudo-diffusion esti-

mated simultaneously) methods. Here, both methods were
applied on the IVIM-DTI model. An improved one-step method
based on damped Gauss–Newton algorithm and a Gaussian prior

for the model parameters was also introduced. The sensitivities of
these methods to different parameter initializations were tested

with realistic in silico simulations and experimental in vivo data.
Results: The one-step damped Gauss–Newton method with a
Gaussian prior was less sensitive to noise and the choice of

initial parameters and delivered more accurate estimates of
IVIM-DTI parameters compared to the other methods.

Conclusion: One-step estimation using damped Gauss–New-
ton and a Gaussian prior is a robust method for simultaneous
diffusion and pseudo-diffusion tensor imaging using IVIM-DTI

model. Magn Reson Med 000:000–000, 2017. VC 2017 The
Authors Magnetic Resonance in Medicine published by
Wiley Periodicals, Inc. on behalf of International Society for
Magnetic Resonance in Medicine. This is an open access
article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.
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INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is a tech-
nique that allows mapping of water molecules’ move-
ment due to diffusion in biological tissues, in vivo and
noninvasively. Water diffusion in biological tissue is
constrained by its microarchitecture (1). Hence, with
proper modeling techniques, dMRI is capable of captur-
ing several microstructural features and information
related to the tissue constituents. There exists several
modeling techniques in the literature capable of captur-
ing such information (2–4), of which the diffusion tensor
imaging (DTI) is the most commonly used. In DTI, water
diffusion within a voxel is represented with a rank-2 ten-
sor (5). Although simplistic, this model was shown to be
extremely useful for providing meaningful bio-markers
such as mean diffusivity (MD) and fractional anisotropy
(FA), that are widely used as measures of microstructural
tissue changes (6). DTI is also useful for the analysis of
neuronal fiber pathways and their visualization (tractog-
raphy) (7).

Perfusion MRI, typically performed separately (8), con-
sists of characterizing blood flow in tissues using techni-
ques such as bolus tracking (9) and arterial spin labeling
(10). The characterization of blood flow helps in detect-
ing changes in capillary microarchitecture, blood micro-
circulation, and blood-tissue exchanges, which are
useful for early detection of several disorders (11)
including vascular cognitive impairment (12).

The intravoxel incoherent motion (IVIM) technique,
originally proposed by Le Bihan et al. (13) captures both
diffusion and perfusion phenomena using dMRI. To do
so, it utilizes a bi-exponential model to describe signal
attenuation in dMRI with a relatively fast pseudo-
diffusion component (due to blood diffusion and flow)
and a relatively slow tissue diffusion component as

S ¼ S0 ðf exp ð�b D�Þ þ ð1� f Þ exp ð�b DÞÞ; [1]

where S is the vector of echo magnitudes of the diffusion
weighted signals within a voxel due to the vector of b-val-
ues, b. The b-value summarizes the attenuating effect of
the gradient magnetic field and the diffusion sequence.
Here S0 is the echo magnitude of the diffusion non-
weighted signal within a voxel. The diffusion coefficient
D and pseudo-diffusion coefficient D* in Equation [1] are
scalar quantities. Information related to perfusion can be
obtained using the vascular volume fraction (also known
as the perfusion fraction), f, and pseudo-diffusion coeffi-
cient, D* (14). The IVIM model has been used mainly in
abdominal imaging including the liver (15–17), kidney
(18), and the pancreas (19). IVIM studies of the prostate
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(20), breast (21), and heart (22), are also available. Very
recently, IVIM imaging of the human brain has gained
importance. Hu et al. reported IVIM parameter changes in
brain tumors (23). Federau et al. reported IVIM parameter
changes in the brain in reaction to hypercapnia and hyper-
oxygenation (24), in response to cardiac cycle (25), stroke
(26), and in brain tumors (27).

For estimating the IVIM parameters, the dMRI signal

can be averaged over a region of interest (19). Region of

interest averaging increases the signal-to-noise ratio

(SNR), effectively yielding more reliable IVIM parameter

estimates. However, voxel-wise information reflecting

tissue heterogeneity is lost in this procedure. Also, a

skilled radiologist or a medical doctor is required to

choose a suitable region of interest by visual inspection.

There are however several methods that generate 2D/3D

voxel-wise maps of IVIM parameters (28). These can be

grouped under two main categories:

1. Two-step method (TSM): In this approach, a first

step assumes that the dMRI signal at high b-values

(b� 1=D�) is dominated by diffusion. Using this

assumption, Equation [1] reduces to

Sb-high � S0 ð1� f Þ exp ð�b DÞ; [2]

where Sb-high is the dMRI signal at high b-values. The

diffusion coefficient D and amplitude S0(1–f) are

then estimated from Equation [2]. In a second step,

D* is estimated (typically constraining D) using all b-

values and the IVIM model, Equation [1]. The vascu-

lar volume fraction f is either estimated in the first

step using the fitted S0(1–f) value and experimentally

obtained S0 value (29), or it is estimated in the sec-

ond step alongside D* (15). TSM estimates are typi-

cally computed using nonlinear least squares (NLLS)

methods (15,24,27). It has been reported that TSM is

sensitive to the choice of cut-off b-value, which in

turn depends on the unknown D* values (30).
2. One-step method (OSM): In this approach all IVIM

parameters, (f, D, D*) are simultaneously estimated

using Equation [1] (16,17,28,31). OSM estimates are

computed either using NLLS methods (16,28), Mar-

kov chain Monte Carlo methods (17), or using wild

bootstrap and fusion moves (31). OSM estimation of

IVIM parameters is ill-conditioned (17), and hence

suffers from poor reproducibility of the results (16).

It has been demonstrated earlier that using priors for

the model parameters yields more stable and accurate

IVIM parameter estimates (31,32).

A comparison of TSM and OSM approaches in estimat-

ing IVIM parameters is presented in (28,33). Although

the IVIM model (1) is capable of capturing differences in

signal attenuation due to blood microcirculation and

microstructural water diffusion, it fails to capture the

anisotropy of blood vessels and tissue microstructures,

whose estimation can be valuable in early detection of

several brain disorders, such as dementia (34), schizo-

phrenia, and bipolar disorder (35), which progress with

vascular and structural remodeling of the tissues. This

anisotropy can be measured as differences in signal

attenuation due to direction dependent magnetic field

gradients (22).
The study of anisotropy effects observed with the

IVIM model was first reported by Callot et al. (36). In

this work, direction dependent IVIM parameters (f, D*,

D) were estimated with the TSM. Karampinos et al. (37)

proposed a modification to IVIM, based on a statistical

model of the capillary arrangements and assuming par-

tially coherent laminar flow. Although this model incor-

porates anisotropy effects due to pseudo-diffusion,

anisotropic diffusion parameters related to tissue micro-

structures were not estimated. Moreover, it has been

recently reported that estimation of such higher-order

metrics could be more vulnerable to experimental design

and noise compared to standard tensor metrics (such as

FA and MD) (38). Recently a combined intravoxel inco-

herent motion diffusion tensor imaging (IVIM-DTI) meth-

odology was proposed, where a combination of the bi-

exponential behavior of IVIM and DTI-like tensor repre-

sentation of the vascular signal was used (22). In this

model, both pseudo-diffusion and diffusion were mod-

eled as tensor quantities as opposed to isotropic scalar

coefficients as in the IVIM model, Equation [1]. Since

pseudo-diffusion is related to perfusion (14), estimating

the pseudo-diffusion and diffusion tensors allow simul-

taneous imaging of perfusion and DTI. Using IVIM-DTI,

various physiologically relevant parameters obtained

separately using DTI and IVIM techniques can be

obtained simultaneously. In addition, visualization of

pseudo-diffusion will help in vivo mapping of the vascu-

lar orientations and architectures with dMRI, which has

not been possible before. A recent IVIM-DTI study based

on TSM estimation of kidney medulla and cortex regions

was presented in (39). Given that TSM and OSM meth-

ods are either sensitive to cut-off b-values (30) or initial

values (16), there is the need to explore better estimation

methods for IVIM-DTI.
In this article, we perform simultaneous pseudo-

diffusion and DTI using TSM and OSM methods by

extending them to IVIM-DTI parameter estimation. We

test the sensitivity of these methods using in silico simu-

lations and in vivo brain imaging data. The TSM and

OSM were carried out using the Lavenberg-Marquardt

(LM) algorithm as implemented in MATLAB (R2016a,

Mathworks, Natick, MA) since it was the most com-

monly used method in previous IVIM studies

(16,25,27,28). We also tested OSM with a modified NLLS

method based on damped Gauss–Newton (DGN), and

with the inclusion of a prior for the model parameters

(40). DGN method had earlier demonstrated better con-

vergence compared to LM and robustness with respect to

initial starting parameters for a nonlinear ill-posed imag-

ing problem in (41).

METHODS

Model Description

In this section, we describe the methodology used for

generating the dMRI data and fitting of the IVIM-DTI

model, described by (22,28)
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S ¼ S0 ðf exp ð�b ĝTD� ĝÞ þ ð1� f Þ exp ð�b ĝTD ĝÞÞ; [3]

where ĝ is the unit direction vector along which the

magnetic field gradient is applied, D is the diffusion ten-

sor and D* is the pseudo-diffusion tensor. The diffusion-

weighted dMRI data, Y is thus modeled as

Y ¼ SðXÞ þ e; [4]

where X ¼ ðS0; f ;D
�;DÞ is the vector of unknown IVIM-

DTI parameters and e is the measurement noise. To

enforce positive definiteness on D* and D, we parameter-

ized them as (42),

D� � D�ðUÞ ¼ UTU; with U ¼

U1 U4 U6

0 U2 U5

0 0 U3

2
66664

3
77775;

D � DðVÞ ¼ VTV; with V ¼

V1 V4 V6

0 V2 V5

0 0 V3

2
66664

3
77775;

[5]

where Ui; i ¼ 1; . . . ; 6, and Vi; i ¼ 1; . . . ;6, are the Cho-

lesky components of D* and D, respectively. It has been

earlier shown that adopting such representation for DTI

leads to slightly higher accuracy for estimating MD and

FA of D in low signal to noise ratio (SNR<5) and high

anisotropic (FA> 0.9) regions (43). Using this representa-

tion, the unknown X is given by

X ¼ ðS0; f ;U1; . . . ;U6;V1; . . . ;V6ÞT:

Estimation

We considered four estimation approaches. The first two

approaches were extensions of the conventional TSM

and OSM to IVIM-DTI. The third approach is a proposed

OSM based on DGN method. The fourth approach is also

a proposed OSM DGN method incorporating a prior for

the model parameters.

1. TSM: LM estimation of X1 ¼ ðS0 ð1� f Þ;V1; . . . ;V6ÞT
using

X̂1 ¼ arg min
X1

jjYb-high � Sb-highðX1Þjj2; [6]

where Yb-high is the dMRI signal with b � bcut-off and

Sb�highðX1Þ ¼ S0 ð1� f Þ exp ð�b ĝT D ĝÞ (see Eq. [2]).

Then, f is calculated using estimated S0ð1� f Þ value

and measured S0 value. Next, estimated x̂
¼ ðf ;V1; . . . ;V6ÞT is constrained and X2 ¼
ðU1; . . . ;U6ÞT is estimated using LM as

X̂2 ¼ arg min
X2

jjY� SðX2; x̂Þjj2: [7]

The LM estimation using TSM, Equations [6, 7] were

performed iteratively for each image pixel using

MATLAB function “lsqcurvefit.” The LM algorithm
performs an iterative minimization of the objective
function as

X̂iþ1 ¼ X̂i þ ½JT
i Ji þ liI��1½JT

i fY� SðX̂iÞg�;

where Ji ¼ @SðX̂iÞ=@X̂i is the Jacobian matrix of the
function SðXÞ evaluated at the ith iteration, I is the
identity matrix and ki is a scalar. When ki is small the
minimization is equivalent to a Gauss–Newton algo-
rithm, for large ki the minimization tends toward the
steepest-descent algorithm (44). If a step is successful
(gives a lower function value), the algorithm sets
liþ1 ¼ li=10, else it is set as liþ1 ¼ li 	 10. In our simu-
lations, the maximum number of iterations was speci-
fied as 10 and the other iteration stopping criteria such
as the tolerance of step size, size of the gradient and
the residuals were left to their default value (10�6).

2. OSM: LM estimation of X, solving

X̂ ¼ arg min
X

jjY� SðXÞjj2: [8]

The LM estimation using OSM, Equation [8] were
also performed iteratively for each image pixel using
MATLAB function “lsqcurvefit.” The maximum
number of iterations and stopping criteria were speci-
fied same as that for TSM estimation.

3. OSM-DGN1: DGN estimation of X using Equation [8].
OSM-DGN1 estimation was performed iteratively for
each image pixel using a DGN algorithm as,

X̂iþ1 ¼ X̂i þ si½JT
i Ji��1½JT

i fY� SðX̂iÞg�:

The DGN algorithm utilizes an inexact line search algo-
rithm for estimating si (40,41). It was shown in (41) that
the DGN algorithm displayed better convergence and
robustness for various choices of initializations than
LM for a ill-posed problem. The maximum number of
iterations and stopping criteria for DGN iterations were
specified same as the previous methods.

4. OSM-DGN2: DGN estimation of X, solving

X̂ ¼ arg min
X

jjY� SðXÞjj2 þ FðXÞ: [9]

where FðXÞ is the regularization functional, constructed
based on the prior information of the model parameters
(45–47). In this work, we chose FðXÞ ¼ ljjLXðX� X�Þjj2.
Here X� is the prior mean, LX

TLX ¼ C�1
X , and

CX¼diag(s2
S0
; . . . ;s2

V6
) is a diagonal (Covariance) matrix

of the variances of X. We note that the estimate, Equa-
tion [9], can be interpreted in the Bayesian inversion
framework as the maximum a posteriori estimate from a
posterior density model, which is based on the observa-
tion model, Equation [4], and a Gaussian prior for the
model parameters (20,48). The prior was constructed
based on the reported values of IVIM parameters and the
std’s were chosen to allow for sufficient variations for
detecting different pathological conditions. See Table 1
for the means and variances in our prior. DGN estima-
tion of, Equation [9], was performed iteratively for each
pixel as,

Simultaneous Magnetic Resonance Diffusion 3



X̂iþ1 ¼ X̂i þ si½JT
i Ji þ l C�1

X �
�1½JT

i fY� SðX̂iÞg � l C�1
X fX̂i � X�g�:

The regularization parameter was manually chosen
as l ¼ 10�2 	 traceðJT

i JiÞ=traceðC�1
X Þ. For systematic

approaches of the regularization parameter selection see
(50,51). The maximum number of iterations and stopping
criteria for DGN iterations were specified same as the
previous methods.

We initialized the parameters such that tensors D�; D
are isotropic (39)

X0 ¼ ðS0;meas; finit;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDðD�Þinit

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDðD�Þinit

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDðD�Þinit

p
; 0; 0;0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MDðDÞinit

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDðDÞinit

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDðDÞinit

p
; 0;0; 0Þ;

[10]

where X0 are the initial IVIM-DTI parameters, S0;meas is
the measured noisy S0 value. The parameters finit; MD
ðD�Þinit; MDðDÞinit are the initial values of f and mean dif-
fusivities of D�; D respectively. To test the estimates
with different initial parameter values, we quantify the
distance between initial and target values by the ratio

Xinit ¼
finit

ftarget
¼ MDðD�Þinit

MDðD�Þtarget

¼ MDðDÞinit

MDðDÞtarget

: [11]

Synthetic Data Generation

We have synthetically generated dMRI signals from
capillary flow and tissue diffusion for two different con-
figurations. These were later used to evaluate the differ-
ent estimation methods.

Configuration 1

The purpose of the first configuration is to test the esti-
mation methods with known ground-truth IVIM-DTI
parameters. The D* equivalent of flow has a known ana-
lytical expression in a system of identically oriented
tubes (mimicking vessels) with Gaussian distributed
velocities (22). In the first simulation configuration
shown in Figure 1a, we considered such a system with
velocities, v 
 N (0.86 mm/s, 0.34 mm/s) along x-axis
undergoing “plug” flow (52). The vascular dMRI signal,
Yvascu was generated as (22)

Yvascu ¼
Z

exp ð�igm � vÞexp ð�bDbloodÞdv

����
����

����
���� [12]

where c is the Gyromagnetic ratio, m is a vector along the
gradient direction (see(52)), v is a vector of velocity with
magnitude v and Dblood¼ 3 	 10�3 mm2/s is the intrinsic
diffusivity of blood. We assumed 20% of the extra-vascular
diffusivity was due to a system of tubes (mimicking axons)

with intrinsic diffusivity Djj ¼0.0017 mm2/s (4), orienta-

tion n̂ ¼ ðcos 30
�
; sin 30

�
;0ÞT and the rest 80% was due to

isotropic diffusion Diso¼8 	 10�4 mm2/s due to the extra-

cellular matrix. The extra-vascular dMRI signal Ydiff was

generated as

Ydiff ¼ exp ð�bĝTð0:2Djjn̂
Tn̂ þ 0:8DisoIÞĝÞ: [13]

The measurement vector, Y was generated as

Y ¼ S0 ðf Yvascu þ ð1� f ÞYdiffÞ þ e: [14]

where f was chosen as 0.12, S0 as 1 and e was the added

Rician noise (53). A set of 500 realizations of Y with

their corresponding S0 data having SNR ranging from 5

to 50 were computed using (14). Stejskal-Tanner pulses

with duration d¼1.9 ms, separation D¼ 2 ms and 11 b-

values (b¼0, 50, 150, 250, 350, 450, 550, 650, 750, 850,

1150 s/mm2) with 12 b0 images and 60 non-co-linear gra-

dient directions for other shells were used to generate

the data.

Configuration 2

In the second simulation configuration, we constructed a

realistic in silico tissue model in a 1 mm 	 1 mm 	
2 mm domain as shown in Figure 5. The domain used a

Gaussian Markov random field model (54) for the map of

S0 (Fig. 5a), two vascular trees mimicking arterioles and

venules and a capillary network connecting them (Fig.

5b), and a distribution of cylinders modeling axons

(Fig. 5c).
For generating the capillary network, we used a modi-

fied spanning tree algorithm presented in (55). For gener-

ating the arteriole and venule trees, we used the

VascuSynth software(56). To compute the vascular dMRI

signal, Equation [12], the flow velocity, vij connecting

node i to j of a vessel segment was calculated from the

volumetric flow rate Qij as vij ¼ Qij=pr2
ij, where rij is the

radius of the segment. The Qij’s and rij’s of the vascular

trees were obtained using VascuSynth by specifying a

smoothly varying oxygen demand map. The parameters

used in VascuSynth are mentioned in Supporting Table

S1. For calculating Qij’s in the capillary network, we

Table 1
Prior Means and Variances

Parameter Mean Standard deviation References

S0 Mean (S0;meas) Std (S0;meas)
f 0.1 0.1 (25,49)
U1; . . . ;U6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:007 mm2=s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:005 mm2=s

p
(49)

V1; . . . ;V6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0007 mm2=s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:000025 mm2=s

p
(25)

FIG. 1. a: Configuration 1 of simulated data: the red lines repre-
sents vessels oriented along x-axis and the blue lines represents

axons oriented 30� to the x-axis on the xy-plane. b: Dependence
of residual error, R, Equation [15] of TSM estimates with cut-off b-

value, bcut-off.
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used Poiseuille’s equation and pressure conservation

(55). The simulated velocities are displayed in Figure 5b.
The simulated axon orientations, as shown in Figure 5c,

were drawn using the Watson distribution and a spatially

smoothly varying degree of dispersion (4). The intrinsic

diffusion coefficients, Djj’s in simulated axons were drawn

from a Gaussian distribution, Djj 
 N (0.0017 mm2/s,

0.0008 mm2/s). The axon lengths were drawn from a

Gaussian distribution with mean 10�4 m and s.t.d. 10�5 m.

The voxel size was specified as 0.2 mm 	 1 mm 	 0.2 mm.

The dMRI signal were calculated using Equation [14].

The S0 data had SNR equal to 50. The target S0; f maps

and measures of D are shown in Figure 6a. There is no

available method (analytical or numerical) to calculate

the D* equivalent of the current flow configurations and

hence not shown in Figure 6a. Although configuration 2

is more realistic than configuration 1, sensitivity analysis

of TSM, OSM, OSM-DGN1, and OSM-DGN2 in estimating

D* cannot be performed using this configuration, since

the target D* is unknown.

In Vivo Data

A diffusion weighted data set of a healthy volunteer was

acquired using a 3T Siemens MAGNETOM Prisma Fit

system. An EPI/spin echo (SE) diffusion weighted pulse

sequence was used with a 128 	 128 acquisition matrix

which resulted in an isotropic voxel size of 2.5 mm. The

number of slices was 20. The echo time was set to 75 ms

and the pulse repetition time to 2700 ms. The acquisi-

tion time was approximately 30 min. The diffusion

weighted gradient settings that were used consisted of 11

b-values (b¼0, 50, 150, 250, 350, 450, 550, 650, 750,

850, 1150 s/mm2) with 12 b0 images and 60 non-co-

linear magnetic field gradient directions for the others.

The first step in the post-processing pipe-line was the

denoising of the dMRI data by exploiting its inherent

redundancy using random matrix theory(57). Next, Gibbs

ringing correction based on local interpolation in k-space

was applied(58). The “Topup” (59)and “Eddy” (60) tools

in FSL were used to correct for susceptibility, eddy cur-

rent, and subject motion distortions.

RESULTS

In this section, we present the estimates obtained using

TSM, OSM, OSM-DGN1, and OSM-DGN2 using the in-

silico phantoms and in-vivo data. Residual error,

R ¼ jjY� SðXÞjj2; [15]

along with percentage (relative) errors in estimated f,
percentage errors in standard tensor measures (MD and

FA) of D�; D and the orientation errors of D�; D. The ori-

entation errors were measured as angles of the major

eigenvectors of the estimated tensors to the target tensor

orientations (61).

Evaluation of f, D�; D Estimates and Residual Using
Configuration 1

It has been previously observed that IVIM TSM estimates

are sensitive to the choice of cut-off b-values (30). To test

the sensitivity of IVIM-DTI TSM estimation to cutoff b-

values the residual error, R, was calculated for a series of
values. Figure 1b shows that R is nearly constant after

b¼ 500 mm2/s, which was chosen as the cutoff b-value.
It is known that OSM estimation is sensitive to the

choice of initial-values (17). Hence, the performances of
the estimation methods were evaluated for varying

parameter initialization using the generated synthetic

data. The results are shown in Figures 2 and 3. Errors in
MD(D*) appear highest in TSM (p <10�20 for errors of

MDðD�Þ between TSM and other estimates at X init ¼ 2:5).

OSM showed the most sensitivity to initial values
(p< 10�18 for errors of f, and D* measures between OSM

and other methods at Xinit ¼ 3). DGN methods displayed
lower sensitivity to inital values (p< 0.02 for f between

OSM-DGN1/OSM-DGN2 and TSM/OSM errors at

Xinit ¼ 3). OSM-DGN2 displayed lower errors compared to
OSM-DGN1 (p < 10�15 for errors of f and D�;D measures

between OSM-DGN1 and OSM-DGN2 at Xinit ¼ 2:5).
Figure 4 displays the convergence of OSM, OSM-

DGN1, and OSM-DGN2 estimates with iteration number,
Niter. It can be seen that OSM-DGN1 and OSM-DGN2

converge faster than OSM.

Evaluation of f, D Estimates and Residual Using
Configuration 2

The target IVIM-DTI parameter maps of simulated
domain, displayed in Figure 5, are shown in Figure 6a.

The estimated parameter maps using the different meth-

ods are shown in Figure 6b–d. The initial value of X was
chosen as finit¼0.02, MDðD�Þinit¼ 0.005 mm2/s, MD

ðDÞinit¼ 0.0005 mm2/s, which corresponded roughly to
the mean target values. Given that the initial values were

close to target values, only a few pixels of OSM esti-

mated parameter maps showed deviations from the target
parameter maps. Residual R and percentage errors in f,
MD(D), and FA(D) are shown in Figure 7. OSM-DGN2

presents the smallest error dispersion for all the
parameters.

Evaluation of Residual Using In Vivo Data

The TSM, OSM, OSM-DGN1, and OSM-DGN2 methods

were applied to the in vivo brain dMRI data (see Fig.
8 and Supporting Fig. S2). X was initialized as finit¼ 0.2,

MDðD�Þinit¼0.003 mm2/s, MDðDÞinit¼ 0.0006 mm2/s by
fitting the average dMRI signal over all pixels with the

IVIM model, Equation [1]. TSM, OSM, OSM-DGN1, and

OSM-DGN2 estimates of f, and measures of D�; D are
shown in Figure 8a–d. The data residuals in the image

and their histograms are also shown. We added a row of

conventional DTI measures estimated using software
TORTOISE version 2.5.1 (62) in Figure 8d. The estimated

D* and D using OSM-DGN2 were used to generate tensor

maps with software ExploreDTI version 4.8.6 (63), shown
in Figure 9.

DISCUSSION

The aim of this study was to explore methods to estimate
IVIM-DTI parameters allowing simultaneous pseudo-

diffusion and DTI, and subsequently, finding a robust
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estimation method. Previously known IVIM approaches

were applied to IVIM-DTI estimation. The influence of ini-

tial parameters and convergence of the methods was also

studied using simulated data. In our simulations (and in

vivo experiment), we employed a wide range of b-values (0

!1150 s/mm2) and gradient directions since IVIM-DTI esti-

mation requires a larger data set (due to larger number of

model parameters) compared to standard IVIM/DTI. The

first simulated dataset had low SNR (SNR 5 !50 for S0

data) as in typical clinical scanners (64), and known target

IVIM-DTI parameters. The second dataset had high SNR

(SNR¼50 for S0 data, comparable to high T MRI scanners

(64)) with more realistic geometry and partially known tar-

get IVIM-DTI parameters. It is known that measurement

FIG. 3. Dependence on initialization on OSM-DGN1 and OSM-DGN2 estimates. Plots of (a) R, (b) percentage errors in f, (c) error in

angles (in degrees) of estimated D*, and (d) D, percentage errors in (e) MD of D*, MD(D*), (f) FA of D*, FA(D*), (g) MD of D, MD(D), (h) FA
of D, FA(D) plotted against Xinit, Equation [11]. In all the plots, the thick lines represent the mean of the estimated values from the 500

noisy samples of Y and the shaded region represents the standard deviation. Here Xinit varies from 0.2 to 3.5.

FIG. 2. Dependence on initialization on TSM and OSM estimates. Plots of (a) R, (b) percentage errors in f, (c) error in angles (in degrees)
of estimated D* and (d) D, percentage errors in (e) MD of D*, MD(D*), (f) FA of D*, FA(D*), (g) MD of D, MD(D), (h) FA of D, FA(D) plotted
against Xinit, Equation [11]. In all the plots, the thick lines represent the mean of the estimated values from the 500 noisy samples of Y
and the shaded region represents the standard deviation. Here Xinit varies from 0.2 to 3.5.
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noise can cause errors in the tensor estimates leading to
nonpositive-definite tensors, particularly in regions of high
anisotropy such as the corpus callosum and the corticospi-
nal tract (43). Hence, we enforced positive-definite con-
straints on D* and D.

In Figure 2 we show the errors in conventional TSM
estimates (39) for configuration 1, with different choices
of initial values. It can be seen that MD(D) appears
slightly better estimated using TSM compared to OSM
and OSM-DGN1. This is because OSM estimation is ill-
conditioned and is more affected by measurement noise
compared to D estimation in TSM. However, the errors
in MD(D*) appear significantly higher in TSM (p <10�20

at Xinit¼ 2.5) indicating D* is most negatively affected in
TSM. The TSM estimates with a realistic phantom, Fig-
ures 6b and 7 again display higher estimation errors (sta-
tistically significant in all measures) compared to other
methods. In the context of disease detection and treat-
ment, changes in IVIM parameters (f, D* equivalent to
MD(D*), D equivalent to MD(D)) have been reported for
several diseases in (26,65,66), and, recently in breast can-
cer treatment (67). Figures 2, 6, and 7 shows how

utilizing TSM would lead to high estimation errors and
could make estimation of such parameter changes unfea-
sible in clinical settings where low SNR data is
available.

In this work, we extended the conventional LM esti-
mation of IVIM parameters to one-step IVIM-DTI parame-
ter estimation. It can be seen in Figures 2 and 3, that
OSM show relatively lower errors than TSM for D* mea-
sures around X init ¼ 1, however it deteriorates fast with
higer/lower initializations and low SNR data compared
to other methods (p <10�18 at Xinit¼ 3). This sensitivity
to initialization and noise is due to the ill-conditioned
nature of the OSM problem (17).

A new OSM based on weighted NLLS estimation of
IVIM-DTI parameters was also proposed and tested. The
method was based on the DGN method with a line
search (40,41). Figure 3a–h demonstrates that the pro-
posed DGN methods, particularly OSM-DGN2, displays
lower sensitivity to initial values compared to LM based
TSM and OSM methods. In Figure 3 OSM-DGN2 show
more accurate estimates (with low SNR and incorrect ini-
tialization) compared to OSM-DGN1 (p < 10�15 at

FIG. 5. Configuration 2 of simulated data.

The images are displayed along x-z plane
of the three-dimensional (1 mm 	 1 mm 	
2 mm) domain. a: Simulated S0 map using

a Gaussian Markov random field model. b:
Synthetic vascular network of arterioles,

venules and capillaries using the Vascu-
Synth software and modified spanning
tree algorithm (MSTM). c: Distribution of

cylinders representing axons. The axon
orientations were drawn using the Watson

distribution.

FIG. 4. Convergence and uncertainties of OSM, OSM-DGN1 and OSM-DGN2 estimates of (a) S0, (b) f, (c) U1, and (d) V1 with iteration

number, Ninter. The mean and standard deviations of the estimates obtained with 500 noisy samples of data Y are shown. The initial
value, Xinit was 2.5.
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Xinit¼ 2.5). This is because the regularizer FðXÞ stabilises
the ill-conditioned problem, Equation [8] by introducing
prior information about the model parameters, resulting
in more stable and accurate OSM estimates(48). Figure 4
shows that DGN converges with fewer iterations and

estimates parameters more accurately than LM. This is
expected, since in the neighborhood of the solution, the
LM scalar ki is progressively smaller in each iteration
and it is equivalent to a regular GN iteration (44). DGN
converges with fewer iterations since every update

FIG. 7. Reconstructions of IVIM-DTI parameters using Configuration 2, Figure 5. The residual R, percentage errors in estimates of f,

MD(D), FA(D) for the four methods are shown along with the p-values (obtained by applying the student’s t-test between the different
methods) represented with star symbols (*). Here we represent the p-values as: * for p<10�2, ** for p<10�5 and � � � for p<10�10.

FIG. 6. Reconstructions of IVIM-DTI parame-
ters using Configuration 2, Figure 5. The S0, f,
MD(D*), FA(D*), MD(D*), FA(D*) maps of the (a)

Target, (b) TSM, (c) OSM, (d) OSM-DGN1, (e)
OSM-DGN2 estimates are shown. Note that
MD(D*), FA(D*) of the target are unknown.

8 Mozumder et al.



FIG. 8. Estimates with in vivo brain dMRI data. a: TSM estimates, b: OSM estimates, c: OSM-DGN1 estimates, d: OSM-DGN2 esti-

mates, e: Conventional DTI estimates. From left: Vascular volume fraction f, MD and FA of pseudo diffusion tensor D*, MD and FA of dif-
fusion tensor D, and map of residual error R.

FIG. 9. Maps of RGB-encoded alignments of estimated D* and D using OSM-DGN2, plotted with ExploreDTI.

Simultaneous Magnetic Resonance Diffusion 9



explicitly optimizes the step-length, instead of taking a
constant as in regular GN iterations. The dMRI signal is
affected by additive Gaussian noise in the real and imag-
inary parts, which results in a signal amplitude with
Rician noise. Rician noise is characterized by a skew dis-
tribution with non-zero positive mean. Hence, the
assumption of zero-mean Gaussian distribution in the
NLLS estimation leads to a data misfit as observed in
Figure 4.

All four estimation methods were applied to real dMRI
data. Figure 8 a shows that MD(D), FA(D) reflect known
microstructural features for such brain regions from pre-
viously published DTI studies (68). However, f and mea-
sures of D* and D in Figure 8b–d display different
characteristics compared to TSM maps in Figure 8a. The
higher residual errors in TSM estimates compared to
other estimates in Figure 8 along with poorly estimated f
and D* measures in Figures 2 and 7 suggest that the
physical assumption of pure diffusion contribution at
high b-values could lead to slightly higher than actual
estimated values of D, and subsequently erroneous f and
D* estimates. Such assumptions are not present in OSM.
Nevertheless, the OSM methods displays high sensitivity
to noise and initial values (24,49). The very low MD(D*),
MD(D) and high f seen in frontal white matter in Figure
8b,c, seen also in simulated low SNR data in Figures 2
and 3, is possibly due to wrong fitting due to ill-
conditioning and low SNR in these regions (64). The low
pseudo-diffusion contribution (f � 0.1) is partially
masked by the noise and in the absence of prior condi-
tioning, the data fits the bi-tensor model to the diffusion
signal alone, leading to lower than usual MD(D*) and
MD(D) values. As seen in Figure 2, OSM-DGN2 is more
robust to noisy data due to prior conditioning of the
problem and the f, MD(D*) and D maps in Figure 8d
match previously reported brain IVIM maps (25,49). In
most configurations, dMRI signal rapidly changes with
flow (or perfusion) variations (22,37,52). This is possibly
why the estimated measures of D* from simulations (Fig.
5) and in vivo data (Fig. 8) are grainy/nonsmooth com-
pared to D. The high residuals near the CSF boundaries
and in deep gray matter are due to partial volume effects
due to CSF and perivascular spaces which shows rela-
tively higher signal intensities (69). The computational
times, tCPUs of these estimates were tCPU ¼ 207s for TSM,
tCPU ¼ 1259s for OSM, tCPU ¼ 1531s for OSM-DGN1 and
tCPU ¼ 1748s for OSM-DGN2 for the entire slice. The
additional computational cost incurred by the line
search in DGN represents around a 40% increase. This
could be acceptable compared with the advantage in the
accuracy of DGN over LM. These results confirm the pre-
vious comparison study of LM and DGN on a ill-posed
problem in (41) and on the use of prior densities in IVIM
estimation (31,32). Estimates from two slices near “circle
of Willis,” demonstrating marked differences between
FA(D*) and FA(D) are also shown in Supporting Fig. S2.

Figure 9 displays the alignment of D* and D. One of
the striking features of this image is the similarity of the
alignments of D* and D. Pseudo-diffusion is directly
related to perfusion (14), hence, MD(D*) and alignment
resembles mean perfusivity and perfusion tensor align-
ments reported in recent arterial spin labeling based PTI

brain study (70). The alignment of the D* in the white
matter is also in agreement to previously reported white
matter vascular tract studies (71) and white matter IVIM
studies (72). The simulation results in Figure 2c,d,
which demonstrate the capability of OSM-DGN2 in effi-
ciently estimating D* and D orientations, along with the
aforementioned studies (70–72), suggest that Figure 9 is
indeed a map of capillary microarchitecture orientations.
This is the first time such a map of the human brain has
been shown using dMRI.

In this work, we only compared NLLS approaches.
Markov chain Monte Carlo methods were reported to
demonstrate higher precision and accuracy compared to
NLLS in IVIM studies in (17,28). Although TSM and
OSM estimation could be extended to Markov chain
Monte Carlo -based methods, in high-dimensional prob-
lems such as IVIM-DTI, Markov chain Monte Carlo meth-
ods are computationally intensive and unsuitable for fast
online estimation in clinical settings. Also, to our knowl-
edge, most popular DTI softwares are based on NLLS
estimation (73). Hence, existing NLLS DTI codes could
be easily modified for IVIM-DTI using the proposed
OSM-DGN2 approach.

One-step joint estimation of pseudo-diffusion and dif-
fusion tensors using IVIM-DTI has not been previously
carried out. In this work, we introduce the IVIM-DTI
OSM and test it with simulations and one in vivo dMRI
study. We also suggest a modification to the OSM using
DGN and a Gaussian prior for the model parameters. We
also give evidence, for the first time, that brain pseudo-
diffusion aligns to brain diffusion tensors. Pseudo-
diffusion tensor alignments has never been reported
using dMRI before. The MATLAB DGN codes used in
this article are available for download at (74).

The results indicate that pseudo-diffusion tensor can
be efficiently estimated along with the diffusion tensor
using OSM-DGN2. Popularly used single exponential
(DTI) models, which capture only microstructural infor-
mation, fail to capture information regarding blood
microcirculation. Estimating pseudo-diffusion helps cap-
ture blood microcirculation (14), which is vital for the
early diagnosis of several disorders such as vascular cog-
nitive impairment (12). Hence, simultaneous estimation
of both D* and D will provide more information about
disorders such as dementia than D alone. One drawback
of IVIM-DTI is the requirement of high dimensional data
(more b-values and gradient directions) as compared to
DTI/IVIM. Future work will address the evaluation of
the proposed technique to early differential diagnosis of
dementia. In particular, we will seek to associate differ-
ent stages of degeneration in the vascular and axonal
microarchitecture with the relative values and orienta-
tion of the diffusion and pseudo-diffusion tensors.

CONCLUSIONS

The OSM-DGN2 show better tolerance to initial values
compared to conventionally used LM algorithm and is
capable of estimating pseudo-diffusion and diffusion ten-
sors with less than twenty percent errors in the tensor
measures, and less than ten degree errors in the tensor
orientations in low SNR dMRI data. Based on our work,
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we propose a one-step method based on DGN and Gauss-
ian prior for the model parameters (OSM-DGN2) for
simultaneous diffusion and pseudo-diffusion magnetic
resonance imaging using a IVIM-DTI model and dMRI
techniques.

ACKNOWLEDGMENTS

The authors thank Paul M. Parizel and Pim Pullens from
the University Hospital Antwerp and Jelle Veraart, Ben
Jeurissen, and Jan Sijbers from iMinds-Vision Lab of the
University of Antwerp for their help in the setup, acqui-
sition and processing of the multi-shell dMRI dataset.

REFERENCES

1. Jones DK. Diffusion MRI theory, methods, and applications. Oxford

University Press, New York, USA; 2011.

2. Assaf Y, Basser PJ. Composite hindered and restricted model of diffu-

sion (CHARMED) MR imaging of the human brain. NeuroImage 2005;

27:48–58.

3. Zhang H, Hubbard PL, Parker GJ, Alexander DC. Axon diameter map-

ping in the presence of orientation dispersion with diffusion MRI.

NeuroImage 2011;56:1301–1315.

4. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC.

NODDI: practical in vivo neurite orientation dispersion and density

imaging of the human brain. NeuroImage 2012;61:1000–1016.

5. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental

design and data analysis - a technical review. NMR Biomed 2002;15:

456–467.

6. Johansen-Berg H, Behrens TE. Diffusion MRI: from quantitative mea-

surement to in vivo neuroanatomy. Academic Press, San Diego, USA;

2013.

7. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber

tractography using DT-MRI data. Mag Res Med 2000;44:625–632.

8. Thomas DL, Lythgoe MF, Pell GS, Calamante F, Ordidge RJ. The mea-

surement of diffusion and perfusion in biological systems using mag-

netic resonance imaging. Phys Med Biol 2000;45:R97–138. R

9. Calamante F, Gadian D, Connelly A. Quantification of perfusion using

bolus tracking mag res imag in stroke: assumptions, limitations, and

potential implications for clinical use. Stroke 2002;33:1146–1151.

10. Wong EC, Buxton RB, Frank LR. Implementation of quantitative per-

fusion imaging techniques for functional brain mapping using pulsed

arterial spin labeling. NMR Biomed 1997;10:237–249.

11. Bullitt E, Muller KE, Jung I, Lin W, Aylward S. Analyzing attributes

of vessel populations. Med Imag Anal 2005;9:39–49.

12. Joutel A, Monet-Leprłtre M, Gosele C et al. Cerebrovascular dysfunc-

tion and microcirculation rarefaction precede white matter lesions in

a mouse genetic model of cerebral ischemic small vessel disease.

J Clin Invest 2010;120:433–445.

13. Bihan DL, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet

M. Separation of diffusion and perfusion in intravoxel incoherent

motion MR imaging. Radiology 1988;168:497–505. pMID: 3393671.

14. Bihan DL, Turner R. The capillary network: a link between IVIM and

classical perfusion. Mag Res Med 1992;27:171–178.

15. Luciani A, Vignaud A, Cavet M, Nhieu JTV, Mallat A, Ruel L,

Laurent A, Deux J-F, Brugieres P, Rahmouni A. Liver cirrhosis: intra-

voxel incoherent motion MR imaging-pilot study. Radiology 2008;

249:891–899.

16. Andreou A, Koh DM, Collins DJ, Blackledge M, Wallace T, Leach

MO, Orton MR. Measurement reproducibility of perfusion fraction

and pseudodiffusion coefficient derived by intravoxel incoherent

motion diffusion-weighted MR imaging in normal liver and metasta-

ses. Euro Radiol 2013;23:428–434.

17. Orton MR, Collins DJ, Koh D-M, Leach MO. Improved intravoxel

incoherent motion analysis of diffusion weighted imaging by data

driven Bayesian modeling. Mag Res Med 2014;71:411–420.

18. Zhang JL, Sigmund EE, Rusinek H, Chandarana H, Storey P, Chen Q,

Lee VS. Optimization of b-value sampling for diffusion-weighted

imaging of the kidney. Mag Res Med 2012;67:89–97.

19. Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verifi-

cation of the intravoxel incoherent motion effect in diffusion-

weighted imaging of the abdomen. Mag Res Med 2010;64:1580–1585.

20. Pang Y, Turkbey B, Bernardo M, Kruecker J, Kadoury S, Merino MJ,

Wood BJ, Pinto PA, Choyke PL. Intravoxel incoherent motion MR

imaging for prostate cancer: an evaluation of perfusion fraction and

diffusion coefficient derived from different b-value combinations.

Mag Res Med 2013;69:553–562.

21. Sigmund EE, Cho GY, Kim S, Finn M, Moccaldi M, Jensen JH,

Sodickson DK, Goldberg JD, Formenti S, Moy L. Intravoxel incoher-

ent motion imaging of tumor microenvironment in locally advanced

breast cancer. Mag Res Med 2011;65:1437–1447.

22. Abdullah OM, Gomez AD, Merchant S, Heidinger M, Poelzing S, Hsu

EW. Orientation dependence of microcirculation-induced diffusion

signal in anisotropic tissues. Mag Res Med 2015;76:1252–1262.

23. Hu Y-C, Yan L-F, Wu L et al. Intravoxel incoherent motion diffusion-

weighted MR imaging of gliomas: efficacy in preoperative grading.

Sci Rep 2014;4:7208.

24. Federau C, Maeder P, OBrien K, Browaeys P, Meuli R, Hagmann P.

Quantitative measurement of brain perfusion with intravoxel incoher-

ent motion MR imaging. Radiology 2012;265:874–881.

25. Federau C, Hagmann P, Maeder P, Mller M, Meuli R, Stuber M,

OBrien K. Dependence of brain intravoxel incoherent motion perfu-

sion parameters on the cardiac cycle. PLoS One 2013;8:e72856.

26. Federau C, Sumer S, Becce F, Maeder P, OBrien K, Meuli R,

Wintermark M. Intravoxel incoherent motion perfusion imaging in

acute stroke: initial clinical experience. Neuroradiology 2014;56:629–

635.

27. Federau C, Meuli R, O’Brien K, Maeder P, Hagmann P. Perfusion

measurement in brain gliomas with intravoxel incoherent motion

MRI. Am J Neuroradiol 2014;35:256–262.

28. Barbieri S, Donati OF, Froehlich JM, Thoeny HC. Impact of the calcu-

lation algorithm on biexponential fitting of diffusion-weighted MRI

in upper abdominal organs. Mag Res Med 2016;75:2175–2184.

29. Lemke A, Stieltjes B, Schad LR, Laun FB. Toward an optimal distri-

bution of b values for intravoxel incoherent motion imaging. Mag Res

Imag 2011;29:766–776.

30. Wurnig MC, Donati OF, Ulbrich E, Filli L, Kenkel D, Thoeny HC,

Boss A. Systematic analysis of the intravoxel incoherent motion

threshold separating perfusion and diffusion effects: proposal of a

standardized algorithm. Mag Res Med 2015;74:1414–1422.

31. Freiman M, Perez-Rossello JM, Callahan MJ, Voss SD, Ecklund K,

Mulkern RV, Warfield SK. Reliable estimation of incoherent motion

parametric maps from diffusion-weighted MRI using fusion bootstrap

moves. Med Image Anal 2013;17:325–336.

32. Neil JJ, Bretthorst GL. On the use of bayesian probability theory for

analysis of exponential decay data: an example taken from intravoxel

incoherent motion experiments. Mag Res Med 1993;29:642–647.

33. Cho GY, Moy L, Zhang JL, Baete S, Lattanzi R, Moccaldi M, Babb JS,

Kim S, Sodickson DK, Sigmund EE. Comparison of fitting methods

and b-value sampling strategies for intravoxel incoherent motion in

breast cancer. Mag Res Med 2015;74:1077–1085.

34. Atwood CS, Bowen RL, Smith MA, Perry G. Cerebrovascular require-

ment for sealant, anti-coagulant and remodeling molecules that allow

for the maintenance of vascular integrity and blood supply. Brain Res

Rev 2003;43:164–178.

35. Dong D, Wang Y, Chang X, Jiang Y, Klugah-Brown B, Luo C, Yao D.

Shared abnormality of white matter integrity in schizophrenia and

bipolar disorder: a comparative voxel-based meta-analysis. Schizo-

phrenia Res 2017;185:41–50.

36. Callot V, Bennett E, Decking UK, Balaban RS, Wen H. In vivo study

of microcirculation in canine myocardium using the IVIM method.

Mag Res Med 2003;50:531–540.

37. Karampinos DC, King KF, Sutton BP, Georgiadis JG. Intravoxel par-

tially coherent motion technique: characterization of the anisotropy

of skeletal muscle microvasculature. J Mag Res Imaging 2010;31:942–

953.

38. Hutchinson EB, Avram A, Komlosh M, Irfanoglu MO, Barnett A,

Ozarslan E, Schwerin S, Radomski K, Juliano S, Pierpaoli C. A sys-

tematic comparative study of DTI and higher order diffusion models

in brain fixed tissue. In Proceedings of the 24th Annual Meeting of

ISMRM, Singapore, Vol. 24, 2016. p. 1048.

39. Notohamiprodjo M, Chandarana H, Mikheev A, Rusinek H, Grinstead

J, Feiweier T, Raya JG, Lee VS, Sigmund EE. Combined intravoxel

incoherent motion and diffusion tensor imaging of renal diffusion

and flow anisotropy. Mag Res Med 2015;73:1526–1532.

40. Noncedal J, Wright S. 1999. Numerical optimization, Vol 2. New

York: Springer.

Simultaneous Magnetic Resonance Diffusion 11



41. Schweiger M, Arridge SR, Nissil€a I. Gauss - Newton method for

image reconstruction in diffuse optical tomography. Phys Med Biol

2005;50:2365–2386.

42. Koay CG, Chang LC, Pierpaoli C, Basser PJ. Error propagation frame-

work for diffusion tensor imaging via diffusion tensor representa-

tions. IEEE Trans Med Imag 2007;26:1017–1034.

43. Koay CG, Carew JD, Alexander AL, Basser PJ, Meyerand ME. Investi-

gation of anomalous estimates of tensor-derived quantities in diffu-

sion tensor imaging. Mag Res Med 2006;55:930–936.

44. The Mathworks, Inc. Natick, M., 2017. Matlab - least-squares (model

fitting) algorithms. Available at: http://uk.mathworks.com/help/

optim/ug/least-squares-model-fitting-algorithms.html. Accessed on 5

July 2017.

45. Zhang X, Lam EY, Wu EX, Wong KK. Application of Tikhonov regu-

larization to super-resolution reconstruction of brain MRI images. In:

Gao X, Mller H, Loomes M, Comley R, Luo S, editors. Medical imag-

ing and informatics, vol. 4987 of Lecture Notes in Computer Science.

Berlin Heidelberg: Springer; 2008. pp 51–56.

46. Neuman B, Tench C, Bai L. Tikhonov regularisation in diffusion sig-

nal estimation. Ann BMVA 2013;2013:1–14.

47. Liu RW, Shi L, Huang W, Xu J, Yu SCH, Wang D. Generalized total

variation-based MRI Rician denoising model with spatially adaptive

regularization parameters. Mag Res Imaging 2014;32:702–720.

48. Kaipio J, Somersalo E. Statistical and computational inverse prob-

lems. New York: Springer; 2005.

49. Federau C, O’Brien K, Meuli R, Hagmann P, Maeder P. Measuring

brain perfusion with intravoxel incoherent motion (IVIM): initial

clinical experience. J Mag Res Imaging 2014;39:624–632.

50. ElShahaby, F. E. A., Landman, B. A., Prince, J. L., 2011. Effect of reg-

ularization parameter and scan time on crossing fibers with con-

strained compressed sensing. Proc SPIE Int Soc Opt Eng 2011;7962:

79624J.

51. Neuman B, Tench C, Bai L. Laplace-Beltrami regularization for diffu-

sion weighted imaging. In Proceedings of the Annual Conference on

Medical Image Understanding Analysis (MIUA12) Loughborough,

U.K, 2012. pp 67–72.

52. Ahn C, Lee S, Nalcioglu O, Cho Z. The effects of random directional

distributed flow in nuclear magnetic resonance imaging. Med Phys

1987;14:43–48.

53. Gudbjartsson H, Patz S. The rician distribution of noisy MRI data.

Magn Reson Med 1995;34:910–914.

54. Lieberman C, Willcox K, Ghattas O. Aug Parameter and state model

reduction for large-scale statistical inverse problems. SIAM J Sci

Comput 2010;32:2523–2542.

55. Su S-W, Catherall M, Payne S. The influence of network structure on

the transport of blood in the human cerebral microvasculature.

Microcirculation 2012;19:175–187.

56. Hamarneh G, Jassi P. Vascusynth: simulating vascular trees for gener-

ating volumetric image data with ground-truth segmentation and tree

analysis. Comput Med Imaging Graph 2010;34:605–616.

57. Veraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping

using random matrix theory. Mag Res Med 2016;76:1582–1593.

58. Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact

removal based on local subvoxel-shifts. Mag Res Med 2015;76:1574–

1581.

59. Andersson JL, Skare S, Ashburner J. How to correct susceptibility

distortions in spin-echo echo-planar images: application to diffusion

tensor imaging. NeuroImage 2003;20:870–888.

60. Andersson JL, Sotiropoulos SN. An integrated approach to correction

for off-resonance effects and subject movement in diffusion MR imag-

ing. NeuroImage 2016;125:1063–1078.

61. Jones DK. Determining and visualizing uncertainty in estimates of

fiber orientation from diffusion tensor MRI. Mag Res Med 2003;49:7–

12.

62. Pierpaoli C, Walker L, Irfanoglu M et al. TORTOISE: an integrated

software package for processing of diffusion MRI data. In Proceedings

of the 18th Annual Meeting of ISMRM, Stockholm, Sweden, 2010.

p. 1597.

63. Leemans A, Jeurissen B, Sijbers J, Jones D. ExploreDTI: a graphical

toolbox for processing, analyzing, and visualizing diffusion MR data.

In Proceedings of the 17th Annual Meeting of ISMRM, Honolulu,

Hawaii, USA, 2009. p. 3537.

64. Polders DL, Leemans A, Hendrikse J, Donahue MJ, Luijten PR,

Hoogduin JM. Signal to noise ratio and uncertainty in diffusion ten-

sor imaging at 1.5, 3.0, and 7.0 tesla. J Magn Reson Imaging 2011;33:

1456–1463.

65. Re TJ, Lemke A, Klauss M et al. Enhancing pancreatic adenocarci-

noma delineation in diffusion derived intravoxel incoherent motion

f-maps through automatic vessel and duct segmentation. Mag Res

Med 2011;66:1327–1332.

66. Liu C, Liang C, Liu Z, Zhang S, Huang B. Intravoxel incoherent

motion (IVIM) in evaluation of breast lesions: comparison with con-

ventional DWI. Euro J Radiol 2013;82:e782–e789.

67. Che S, Zhao X, OU Y, Li J, Wang M, Wu B, Zhou C. Role of the intra-

voxel incoherent motion diffusion weighted imaging in the pre-

treatment prediction and early response monitoring to neoadjuvant

chemotherapy in locally advanced breast cancer. Medicine 2016;95:

e2420.

68. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of

the brain. Neurotherapeutics 2007;4:316–329.

69. Salminen LE, Conturo TE, Bolzenius JD, Cabeen RP, Akbudak E, Paul

RH. Reducing CSF partial volume effects to enhance diffusion tensor

imaging metrics of brain microstructure. Technol Innov 2016;18:5.

70. Park S-H, Do W-J, Choi SH, Zhao T, Bae KT. Mapping blood flow

directionality in the human brain. Mag Res Imag 2016;34:754–764.

71. Nonaka H, Akima M, Hatori T, Nagayama T, Zhang Z, Ihara F. Micro-

vasculature of the human cerebral white matter: arteries of the deep

white matter. Neuropathology 2003;23:111–118.

72. Karampinos D. Mapping anisotropic tissue fiber and microvascula-

ture architecture with diffusion MRI: application to skeletal muscle

and white matter. Ph.D. thesis, University of Illinois at Urbana-

Champaign; 2008.

73. Soares J, Marques P, Alves V, Sousa N. A hitchhikers guide to diffu-

sion tensor imaging. Front Neurosci 2013;7:

74. Mozumder M, Beltrachini L, Frangi AF. 2016. Pseudo-diffusion and

diffusion magnetic resonance tensor imaging. Available at http://

www.cistib.org/index.php/download/IVIM-DTI. Accessed on 5 July

2017.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Table S1. Configuration 2 simulation details.
Fig. S1. Histogram of residual error R from (a) TSM estimates, (b) OSM
estimates, (c) OSM-DGN1 estimates, (d) OSM-DGN2 estimates, and (e)
conventional DTI estimates.
Fig. S2. Estimated IVIM-DTI parameters and measures using in vivo dMRI
data from two slices (a) and (b) near the “circle of Willis” using IVIM-DTI2.
A marked difference between FA(D�) and FA(D) is noticed, possibly due to
the presence of a substantial vascular component near the circle of Willis.
Fig. S3. Map of voxels showing higher DTI residuals, ResDTI (computed
using software TORTOISE version 2.5.1) compared to IVIM-DTI residuals,
ResIVIM2DTI (computed using OSM-DGN2). From left to right: map of voxels
with (a) ResDTI >Res IVIM2DTI, (b) Res DTI >1.2 3 Res IVIM2DTI, and (c) Res

DTI > 1.5 3 Res IVIM2DTI. The pixels with highest deviation are seen in the
gray matter, possibly due to the presence of more capillaries and higher
contribution to pseudo-diffusion.
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