
J Biomed Phys Eng

www.jbpe.org

An Efficient Framework for Accurate 
Arterial Input Selection in DSC-MRI of 
Glioma Brain Tumors

Rahimzadeh H.1,2, Fathi Kazerooni A.1,3, Deevband M. R.2, 
Saligheh Rad H.1,3*

1Quantitative Medical 
Imaging Systems Group, 
Research Center for 
Molecular and Cellular 
Imaging, Tehran Univer-
sity of Medical Sciences, 
Tehran, Iran
2Department of Bioen-
gineering and Medical 
Physics, Shahid Behesh-
ti University of Medical 
Sciences, Tehran, Iran
3Department of Bio-
medical Engineering and 
Medical Physics, School 
of Medicine, Tehran 
University of Medical Sci-
ences, Tehran, Iran

*Corresponding author: 
H. Saligheh Rad
Research Center for 
Molecular and Cel-
lular Imaging, Institute 
for Advanced Medical 
Technologies, Imam Hos-
pital, Keshavarz Blvd., 
1419733141 Tehran, 
Iran
E-mail: h-salighehrad@
tums.ac.ir
Received: 24 January 2018
Accepted: 28 March 2018

Introduction

Dynamic susceptibility contrast-enhanced magnetic resonance 
imaging (DSC-MRI) is a common technique for quantify-
ing perfusion parameters of the brain, i.e. cerebral blood flow 

(CBF), cerebral blood volume (CBV), and mean transit time (MTT), 
which have widespread applications in brain tumor grading and treat-
ment monitoring [1-4]. Quantification of DSC-MRI can be performed 
using relative or absolute quantification. The former is performed by 
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ABSTRACT
Introduction: Automatic and accurate arterial input function (AIF) selection 
has an essential role for quantification of cerebral perfusion hemodynamic param-
eters using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI). 
The purpose of this study is to develop an optimal automatic method for arterial input 
function determination in DSC-MRI of glioma brain tumors by using a new prepro-
cessing method. 
Material and Methods: : For this study, DSC-MR images of 43 patients 
with glioma brain tumors were retrieved retrospectively. Our proposed AIF selec-
tion framework consisted an effcient pre-processing step, through which non-arterial 
curves such as tumorous, tissue, noisy and partial-volume affected curves were 
excluded, followed by AIF selection through agglomerative hierarchical (AH) 
clustering method. The performance of automatic AIF clustering was compared with 
manual AIF selection performed by an experienced radiologist, based on curve shape 
parameters, i.e. maximum peak (MP), full-width-at-half-maximum (FWHM), M 
(=MP/ (TTP × FWHM)) and root mean square error (RMSE).
Results: Mean values of AIFs shape parameters were compared with those 
derived from manually selected AIFs by two-tailed paired t-test. The results showed 
statistically insignificant differences in MP, FWHM, and M parameters and lower 
RMSE, approving the resemblance of the selected AIF with the gold standard. The 
intraclass correlation coefficient and coefficients of variation percent showed a bet-
ter agreement between manual AIF and our proposed AIF selection than previously 
proposed methods.
Conclusion: The results of current work suggest that by using efficient prepro-
cessing steps, the accuracy of automatic AIF selection could be improved and this 
method appears promising for efficient and accurate clinical applications.

Keywords
Perfusion, Dynamic Susceptibility Contrast Enhanced MRI, Arterial Input 
Function, Cluster Analysis

I



J Biomed Phys Eng

www.jbpe.orgRahimzadeh H. et al
directly assessing the curve shape descriptors, 
while the latter requires accurate estimation of 
the parameters based on the kinetic theory and 
therefore, allows for patient-specific evalu-
ation, regardless of the protocol and scanner 
being used.

Nonetheless, one of major problems in abso-
lute quantification of DSC-MR images is ac-
curate determination of the arterial input func-
tion (AIF), which describes the concentration 
of contrast agent during its passage from the 
arteries feeding the brain tissue. In clinical 
applications, AIF is typically obtained manu-
ally by drawing a region of interest around the 
middle cerebral artery (MCA) or internal ca-
rotid artery (ICA) [5-9]. Nonetheless, manual 
AIF selection procedure is time-consuming, 
subjective and it depends on the experience 
of the radiologist. Thus, developing automatic 
and accurate AIF selection method is impor-
tant to achieve the reliable diagnosis. 

In this context, Murase et al [8] and Mourid-
sen et al [10] proposed fuzzy c-means (FCM) 
and k-means clustering approaches, respec-
tively. Due to poor reproducibility of FCM 
and k-means clustering techniques, Yin et al 
proposed agglomerative hierarchy (AH) tech-
nique [11], which showed high reproducibility  
compared with FCM and k-means clustering. 
However, evaluation of the AH method was 
carried out on healthy subjects, which may 
lack generalization for clinical applications, 
like the assessment of brain tumors. Two of 
such problems can be outlined: (1) the simi-
larity of the curve shapes within tumorous and 
arterial regions, which causes incorrect selec-
tion of AIF curves within tumorous regions 
instead of arteries, (2) selection of truncated, 
noisy or non-ideal curves mistakenly as AIF.  

To address these problems, in the current 
study, we have implemented an efficient AIF 
selection framework, consisting of a new pre-
processing step to exclude tumorous, trun-
cated, noisy and non-ideal curves followed by 
AH clustering to increase accuracy and preci-
sion of automatic AIF selection.

Material and Methods
In this retrospective study, DSC MR images 

of 43 patients who have been histopathologi-
cally-confirmed with glioma brain tumors (20 
low-grade glioma, and 23 Glioblastoma Mul-
tiform (GBM)) were used for evaluation of 
methods.30 of data were downloaded from the 
Cancer Imaging Archive [12] and 11 of them 
were acquired from Imam Khomeini hospital. 
The study approval was obtained from the in-
stitutional ethics committee and the subjects 
were included only if they provided their in-
formed consent.

TCGA DSC-MR imaging (T2
*-based per-

fusion MRI) had been carried out on 3 Tesla 
MR Scanner (GE Medical Systems) with the 
following parameter specifications: TE/TR= 
40/1900 ms, flip angle=90, FOV= 230   230 
mm2, matrix=128  128, slice thickness= 5 mm 
and for each slice, 60 or 95 images were re-
corded at intervals equal to the repetition time. 

Perfusion images of Imam Khomeini hospi-
tal were imaged with 3 tesla Siemens MR scan-
ner with: TE/TR= 45/2340 ms, flip angle=90, 
FOV= 230   230 mm, matrix=128  128, slice 
thickness= 5, for each slice 50 images were re-
corded. Image acquisition had been performed 
before and immediately after injection of 0.2 
mmol/kg the Gd-DTPA with a rate of 5 ml/sec.

Image Analysis 
An Overview of DSC-MRI Quantifica-

tion
Hemodynamic parameters, i.e. CBV, CBF 

and MTT were quantified based on the indica-
tor dilution theory, from the acquired *

2T im-

ages. First, the slices containing major arter-
ies, such as MCA and ICA, were chosen. For 
each voxel, signal intensity changes over time 
were obtained [2] from:

( )
*
2( )

0

E

t

KT
TS t S e
−

=                                          [1]

where S(t) is signal intensities at time t, 0 S  is 
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the mean baseline signal intensity, *

2T  is the 

Gradient echo transverse relaxation time and k 
is the unknown proportionality factor with an 
assumed value of k=1. A linear relationship 
was assumed between contrast agent changes 
and transverse relaxation rates (1/ *

2T ) [10] 

and the curves of concentration agent changes 
were obtained based on the following formu-
lation:

( )
0

( )
 E

K S tC t ln
T s

= −                                  [2]

Where C (t) is the contrast agent concentra-
tion changes over time t; S (t) is the signal in-
tensity changes over time t; ET  is echo time; 

and k is a constant that relates to the contrast 
agent relaxivity and other unknown factor pa-
rameters, and is typically set to 1. CBV that it 
can be obtained by using concentration-time 
curve and the selected AIF [1, 2]:

( )
( )

tH C tKCBV
AIF tρ

= ∫                                 [3]

Where 1. 04 ( / )g mlρ =  is defined as the 

brain density and KH=0.73 refers to hematocrit 
differences in large and small vessels. Regard-
ing to indicator dilution theory, CBF is mea-
sured by deconvolution of concentration-time 
curve and AIF [2, 13]:

( ) 1( ) ( )tCBF R t C t AIF t−× = ⊗                 [4]

R (t) is the residue function that describes the 
fraction of the contrast agent present within 
the tissue at time t. MTT is measured using 
central volume theorem  [14]:

CBVMTT
CBF

=                                                  [5]

Gamma variate fitting can be used based on 
the following equation to isolate the first pass 
and eliminate recirculation [10, 15]:

( ) 0 0( ) exp( ( ) / )C t A t t t tα β= − − −              [6]

α is the measure of inflow velocity, β is the 
washout velocity, t0 is the bolus arrival time 
and A represents the maximum peak of con-
centration-time curve. Initial values should be 
defined beforehand for more reliable conver-
gence. An alternative is the simplified gamma 
function curve fitting proposed by Chan et 
al [16] which shows lower errors and can be 
executed faster than the previous methods. 
Therefore, here, the simplified gamma variate 
function was used to fit on concentration-time  
curves for isolating the first pass [17]:

( ) ( )( )' ' 'exp 1maxC t C t tα α= −
                       [7]

'
0 0( ) / ( ) 0maxt t t t t= − − >

where t0 is the bolus arrival time; Cmaxis the 
maximum peak of concentration curve; α is 
the inflow velocity steepness measure; tmax is 
the time to reach the maximum peak of con-
centration-time curve.
Automatic Determination of AIF
The main discriminating characteristics of 

AIF concentration-time curve from tissue con-
centration-time curves are the maximum peak 
(MP), full-width at half-maximum (FWHM), 
area under the curve (AUC), and time to peak 
(TTP). Arterial curve has higher MP, larger 
AUC, lower TTP, and narrower FWHM in 
comparison with tissue concentration-time 
curves. In this work, the following steps were 
carried out for automatic AIF determination 
(Figure 1):

1- Motion Correction: Involuntary motions 
like breathing and heartbeat, which cause mis-
alignment of consecutive images during DSC-
MRI, were corrected. All of the images were 
aligned to the first pre-contrast primarily-ac-
quired image based on a rigid transformation 
using SPM (available at http://www.fil.ion.
ucl.ac.uk/spm/; version SPM99) and INRI-
Align 1.01 (available at http://www-sop.inria.
fr/epidaure/Collaborations/IRMf/ INRIAlign.
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html) [18, 19]. As smoothing causes errors in 
DSC-MRI quantification, no smoothing was 
applied.

2- Exclusion of Tumorous Regions: As the 
curves belong to the tumorous regions mim-
ic arterial curves, the possibility of choosing 
false curve increase. Hence, the curves of the 
tumorous regions should be excluded before 
AIF selection. Mean signal intensity in the 
baseline for the tumorous region part is higher 
than other parts of the brain tissue. By using 
k-means clustering, signal intensity curves 
were classified to five clusters. Thus, the clus-
ter with the highest mean baseline value was 
removed as the tumorous cluster (Figure 2) [1, 
20]. 

3- Noise Reduction: Signal intensity chang-
es during the first pass of contrast agent could 

hit the noise floor level, which results in trun-
cated concentration-time curves [21] and can 
cause significant systematic errors in CBV 
and CBF parameter quantifications [22]. As 
mentioned above, concentration-time curves 
consist of three parts, including baseline, first-
pass and steady-state. Typical concentration-
time curve ascends from baseline part to the 
maximum peak, then it descends from the 
maximum peak to the steady state. In this 
simple precondition, if in these ascending and 
descending paths, contrast agent concentra-
tion reaches zero, this point is considered to 
be contaminated by noise. Therefore, average 
of the concentration values of a point before 
and one after the noisy point is replaced with 
the value of the noisy point to reform the curve 
(Figure 3).

4- Elimination of Distorted Curves: Due to 
various scanning artifacts, such as partial vol-
ume effects, physiologic pulsations, and shifts 
in voxels, some highly distorted concentration 
curves may be resulted [10, 11, 15, 23, 24]. 
These curves induce errors in the automatic 
AIF selection procedures. For exclusion of 
these irregular curves, we propose a new cri-
terion. Typical concentration-time curves are 
bell-shaped and form an ascending-descend-
ing path between the baseline and steady-state 
portions. If a horizontal line is intersected with 
the bell-shaped portion of the concentration-
time curve, two intersecting points will re-
sult. However, noise-distorted curves show 
fluctuations in an ascending-descending path. 
Compared with a typical concentration-time 
curve, if a horizontal line is intersected with a 
distorted concentration-time curve, more than 
two intersection points result. So, for discard-
ing these distorted curves, concentration-time 
curves were intersected separately by 5 hori-
zontal lines with values in the range of 0.5 to 
0.9 of the maximum peak (0.1 unit intervals). 
If the horizontal lines and concentration-time 
curves return more than 2 intersecting points, 
this curve will be regarded as a distorted and 
irregular curve and is discarded from further 

Figure 1: Flowchart showing the automatic 
AIF determination processes carried out to 
DSC-MRI perfusion clinical data in the pro-
posed study.
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processing. 
5- Selection of Candidate AIF Curves: 

Through this step, by using arterial curve 
characteristics, such as higher MP, early TTP, 
and lower FWHM, non-arterial curves were 
discarded and candidate AIF curves were 
maintained. This was performed by taking 
the average MP of the remaining curves from 
the previous steps. The MP of each curve was 
compared with the average MP and if it was 
lower than the average, the curve was ex-
cluded. This procedure was repeated based on 
TTP and FWHM and if TTP and FWHM of 
the curves were larger than their average, they 
were discarded. Ultimately, several candidate 

AIF curves would be maintained.
6- Imposing Partial-Volume Criterion: 

Bleeker et al [9] proposed a criterion to de-
tect of the curves contaminated with the par-
tial volume effect (PVE). A simplified form of 
this criterion was employed by Yin et al [11, 
23, 24], which will be described briefly here. 
First, the area under the gamma-variate func-
tion fitted on the first-pass of a concentration-
time curve was calculated (AUC1). Second, 
initiation of the steady-state was assumed 
as the first time-point which was lower than 
three-tenths of a MP, the ten succeeding time 
points after the initial point of the steady-state 
portion were integrated (AUCss). Then, the 

Figure 2: Tumorous region removal. Two sample of signal intensity curves: (a) tumorous region 
and (b) white matter. Signal intensity in tumorous region has higher signal intensity in baseline 
part in comparison with white matter. The subplots (c) and (d) shows two Sample of T2

* images 
before and after tumorous regions removal.
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mean ratio of AUCss to AUC1 was calculated, 
and if the result fell outside the accepted range 
(mean ratio±20 %), the curve was considered 
to be affected by PVE and was discarded.

7- Clustering: Finally, AH clustering was 
applied to classify the remaining curves into 
five clusters, including white matter, gray mat-
ter, arterial, venous and other curves, based on 
their similarity. AIF cluster and curve were 
selected by the measure of M=MP/ (TTP × 
FWHM).

The flow chart of our proposed automatic 
AIF selection procedure (Proposed-AIF) is il-
lustrated in Figure1.

Comparison with Automatic AIF Se-
lection Method by Yin et al 

One of the most recent and efficient methods 
for automatic AIF selection has been proposed 
by Yin et al. on normal subjects [11, 15, 23, 
24]. In our study, we evaluated their method 
by clinical brain tumor data.

As it mentioned similarity of tumorous and 
AIF curves caused Yin et al method which was 
performed using normal data, get trapped by 
tumorous curves and AIF wrongly was ob-
tained in the tumorous region. To solve this 
problem, at first, the tumorous region was ex-
cluded as it explained in our proposed method. 
Afterward, the following preprocessing steps 
were used in Yin et al proposed method ex-
actly applied:

1- In the first step, the area under concentra-
tion curves was calculated and 90 percent of 
them, with the lowest value were discarded as 
tissue curves.

2- Then, Roughness measurement used to 
discard noisy curves:

''

0

( )Roughness C t dt
∞

= ∫                                 [8]

25% of the curves with largest integral were 
excluded as noise curves. 

3- PVE-affected curves were excluded us-
ing the condition proposed by Bleeker et al [9] 
which is described in step 6 of the previous 
section. However, they used gamma fitting 
of Equation 6 to separate first pass which had 
longer time expectation time and errors in fit-
ting.

AH clustering methods were applied with 
cluster number of five, and automatic AIF ac-
quired by Yin et al method (to be called Yin-
AIF hereafter) was applied and AIF was se-
lected by AH clustering.

There were some difference between our 
proposed and Yin et al method. At first, us-
ing tumorous data, which its tumorous curves 
were challenging issue. Furthermore, in our 
proposed method noisy, distorted and non-ar-
terial curves excluded with new preprocessing 
steps which completely different with Yin et al 

Figure 3: Truncated concentration curve correction. A Sample of truncated concentration curves 
were shown in subplot (A), truncated time point highlighted by red circle. Mean value of after 
and before concentrations were replaced in truncated time point (red circle). Correction of this 
curve displayed in subplot (B).
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preprocessing steps. Moreover, In PVE condi-
tion we used simplified gamma fitting which 
was more accurate and faster than Yin et al 
used method. 

In both methods, final AIF obtained by using 
the same AH clustering method to determine 
the preprocessing steps effect on AIF selec-
tion.

Statistical Analysis
For evaluation of the performance of each 

clustering method, an experienced radiolo-
gist was asked to insert regions of interest in 
(ROIs) around middle carotid artery (MCA) 
and internal carotid artery (ICA). Among the 
selected AIFs, the representative AIF for that 
patient (True-AIF) was selected based on 
curve shape characteristics like higher MP and 
AUC, and lower FWHM and TTP. For auto-
matic and True AIFs, shape parameters i.e. 
FWHM, TTP, MP, AUC and M (M=MP/ (TTP 
× FWHM)) were calculated.

The difference between automatic AIF and 
True-AIF was computed based on the root 
mean square error:

( ) 2

1

1 [( ( )]
n

manual i true i
i

RMSE AIF t AIF t
n =

= −∑ [9]

Where n is the number of dynamic scanning 
volumes. 

For comparing mean values of AIF shape 
parameters obtained by manual and automatic 
methods, Student’s paired t-test analysis was 
performed and p-values less than a level of 
0.05 were considered to be statistically sig-
nificant. In ideal situations, the mean values of 
AIFs were derived from the manual method, 
as the gold standard of comparison [8, 11, 15, 

23, 25], and the automatic method is exactly 
the same. Therefore, to accept an automatical-
ly selected AIF, the mean values of True-AIF 
and automatic AIF should show insignificant 
differences (p-value>0.05).

Furthermore, the intra-class correlation 
(ICC) coefficient was performed to quantify 
the degree of agreement between automatic- 
and True- AIF. In ICC analysis, if automatic-
AIF is similar to True-AIF, the ICC should be 
close to 1. Another measure for concordance 
of our automatically selected AIF and True-
AIF in comparison with Yin-AIF is the coef-
ficient of variation (CV), which can be calcu-
lated by the ratio of standard deviation to the 
mean (STD/Mean) of each shape characteris-
tic parameter. For each parameter, decreased 
CV is desirable. 

Results

Gamma-Variate Fitting
For evaluating the accuracy of gamma-vari-

ate fitting methods, complicated (Equation 6) 
and simplified gamma-variate fitting (Equa-
tion 7) were respectively used in our proposed 
method and the one proposed by Yin et al. The 
mean value of MP, TTP, and FWHM param-
eters were extracted from 4311 concentration 
curves. These curves were generated in the 
sixth step (Bleeker condition) of automatic 
AIF procedure for 43 data. By using the TTP 
point, a 14-second time window was defined 
to include the first-pass part of the concentra-
tion curve and decrease steady state and base-
line effects on calculation RMSE between 
gamma-variate fittings and original concentra-

MP TTP FWHM RMSE Execution Time
Complicated gamma fitting 0.0433 21.96 5.599 0.0052 0.209

Simplified gamma fitting 0.0381 22.56 4.695 0.0044 0.031
Original Curve 0.0381 22.56 4.381 - -

Table 1: Comparison between mean values of gamma variate fittings shapes parameter ob-
tained using two kind of gamma fitting and original curve.
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tion curves. Also, execution time for each fit-
ting was computed. 

According to Table 1, MP and TTP in the 
simplified form of gamma fitting were exactly 
equal to mean values of original concentration 
curves and the FWHM mean value was close 
to the mean FWHM of original concentration-
time curves. RMSE in simplified gamma fit-
ting decreased as expected. Figure 4 shows a 
good agreement between the original concen-
tration-time curve and simplified gamma fit-
ting. Moreover, this method had required ex-
ecution time compared with the initial gamma 
fitting (Table 1). Statistical analysis showed 
significant difference for FWHM, RMSE and 
execution time between complicated gamma-
variate fitting and simplified gamma fitting. 
Hence, using simplified gamma fitting was 
more efficient in terms of computation burden 
and accuracy than the complicated method. 

Automatic AIF Selection
According to the procedures explained, AIFs 

were obtained separately based on our new 
proposed method and Yin’s approach. As de-
scribed before, the True-AIF shows discrimi-
nating characteristics like earlier TTP, nar-
rower FWHM, higher MP and M. The shape 
parameters for the two automatic method and 
True-AIF were compared. 

The results of calculating CV for True-AIF, 
our proposed and Yin’s methods are indicated 
in Table 2. CV was lower for the four param-
eters, i.e. MP, TTP, FWHM, and M, based 
on our proposed method in comparison with 
Yin’s method. However, the CV for AUC pa-
rameter based on Yin’s method was less than 
our proposed method. Overall, the decrease in 
CV for four of the descriptive parameters in-
dicates that our proposed method resulted in 
less standard deviation in estimation of AIF 
parameters. 

Table 3 shows the mean values for the cal-
culated parameters based on our proposed and 
Yin’s methods. It is apparent that the differ-
ences between the mean values of parameters 

Figure 4: Two gamma fitting method accuracy. A sample of gamma variate function fitted (blue 
curves) on concentration curve (black curves). In subplot (A) complicated gamma variate fitting 
was carried out in last studies and in subplot (B) Chan et al simplified gamma variate were used 
in our proposed method were illustrated. Its intuitively obvious gamma fitting used in proposed 
method has better fitting.

MP AUC TTP FWHM M
True-AIF 32 38 23 37 50

Our proposed method 31 86 30 41 68
Yin-based AIF 38 37 31 60 170

Table 2: Coefficient of variation percent illustrated for our proposed, Yin-based and True AIFs.
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generated by the two automatic methods are 
significantly different. ICC analysis value 
for MP increased from 0.41 to 0.7, which in-
dicates good agreement between MP of our 
proposed method and True-AIF.  TTP values 
obtained from both automatic methods are in 
good agreement with each other and there is 
no significant difference (P=0.66). However, 
in Table 4, ICC showed better performance 
of Yin’s method with respect to our proposed 
method, for TTP, as ICC for our proposed 
method and Yin’s method were 0.66 and 0.86, 
respectively. The mean FWHM for AIF se-
lected by new method was closer to True-AIF 
and the difference between automatic meth-
ods is significant (P=0.001). ICC values for 
FWHM increased from 0.35 to 0.44. AUC for 
both automatic methods are in agreement with 
True-AIF and there was no significant differ-
ence (P=0.759). Moreover, ICC value for both 
methods were approximately the same. The M 
value for our proposed method is in line with 
True-AIF compared with Yin’s method; in ad-
dition, this difference was statistically signifi-
cant (P=0.037). The increase in ICC values 
for M was remarkable and the values changed 
for Yin’s and our proposed methods from 0.08 
and 0.58, respectively. RMSE for automatic 

and True-AIF differences, notably decreased 
in our proposed method and statistical analy-
sis of pair t-test showed the significant differ-
ence (P=0.002). Overall, the mean values of 
the AIF shape parameters for True-AIF and 
our proposed method are more in agreement 
compared to Yin’s method and True-AIF. 

 In Figure 5, comparison of the AIF derived 
from manual and automatic methods is indi-
cated for a patient. As it can be observed from 
this figure, Yin’s method mistakenly selected 
noisy curves instead of AIF which is different 
from the AIF selected by the manual method. 
But our proposed method was capable to iden-
tify the same AIF as the one selected by the 
manual method. 

Discussion
Determination of AIF has an essential role 

in absolute quantification of DSC-MRI perfu-
sion maps, where  errors in accurate AIF selec-
tion can lead to significant errors in estimation 
of the perfusion maps [23]. Manual selection 
of AIF depends on the expertise of the radi-
ologist to identify large arteries, such as MCA 
and ICA and to choose the correct AIF curve 
by assessing arterial curve characteristics [7, 
9, 10, 21]. Therefore, manual selection of AIF 

Efficient Framework for AIF Selection

MP AUC TTP FWHM M RMSE
True-AIF 0.111 0.434 24.23 3.492 0.00155 -

Our proposed method 0.109 0.418 24.95 3.64 0.0016 0.0176
Yin-based AIF 0.095 0.403 25.70 2.59 0.0036 0.0261

P-value 0.002 0.759 0.367 0.001 0.037 0.002

Table 3: Comparison of the AIFs shape parameters obtained from different automatic methods 
and the true AIF.

MP AUC TTP FWHM M
Our proposed method 0.70 0.48 0.86 0.44 0.58

Yin-based AIF 0.41 0.41 0.66 0.35 0.08

Table 4: Intraclass correlation coefficient agreement measure between automatic method and 
True AIF.
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is tedious, subjective, and lacks reproducibil-
ity.  To overcome these limitations, several au-
tomatic methods have been proposed for AIF 
selection. 

In the automatic method proposed by 
Mouridsen et al [10], two new preprocessing 
steps were used to exclude non-arterial curves 
including tissue, noisy and truncated curves. 
Arterial curve had higher CBV in comparison 
with tissue curves, including gray matter and 
white matter, so they calculated area under the 
concentration curves (AUC), which is propor-
tional with CBV, and 90% of smallest AUC 
values were considered as tissue curves and 
discarded. Furthermore, 25% of the curves 
with largest AUC were eliminated as noisy 
curves. Then, they used K-means clustering 
to classify the remaining curves to reach the 
final AIF.  However, K-means clustering has 
low reproducibility. Yin et al [11] used the two 
preprocessing steps suggested by Mouridsen 
for discarding tissue and noisy curves. They 
also calculated the Bleeker condition for ex-
cluding PVE-affected curves. Instead of K-
means, they  examined AH clustering which 

has higher reproducibility , to classify the re-
maining concentration curves accurately. The 
result showed that AH clustering could deter-
mine AIF much better than K-means. One of 
the limitations of the work carried out by Yin 
et al was using healthy volunteer data to eval-
uate their method. 

Our evaluation of Yin’s method on DSC-
MR images of brain tumor   patients revealed 
several issues. One of the major problems was 
similarity of the curves of arterial and the tu-
morous region that caused incorrect selection 
of tumorous curves instead of arterial curves. 
Yet after removing tumorous regions, AIF se-
lection by Yin’s method did not improve and 
the AIF obtained by Yin’s method showed sig-
nificant differences with the True-AIF, which 
was selected manually by an expert radiolo-
gist.  Evaluating the discarded and AIF curves 
in Yin’s method indicated that many arterial 
curves were incorrectly excluded as noisy 
curves and some truncated and noisy curves 
were chosen as AIF. As a result, using prepro-
cessing steps to exclude tumorous, noisy and 
truncated curves were necessary to determine 

Rahimzadeh H. et al

Figure 5: . AIF selection in automatic methods. The plots of (A) and (B) are two sample of AIF 
were selected by Yin method and the plots of (C) and (D) are the AIFs which selected by new 
proposed method for the same data. AIF obtained by proposed method are more ideal and it 
was the same of True AIF.
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AIF with high accuracy. 
As a solution to this problem, in the current 

study, truncated curves were corrected and 
a new condition was used to exclude noisy 
curves. Furthermore, AIF curve has a higher 
maximum peak, area under curves and lower 
FWHM and time to peak. Yin and Mouridsen 
just used area under curve feature of AIF and 
excluded 90% of the curves. Instead, in this 
work, we assessed more descriptive features 
of AIF, including maximum peak, time to peak 
and FWHM. As a result, in our new condition, 
by using more AIF curve features, the higher 
number of non-arterial curves were excluded. 

The condition proposed by Bleeker et al for 
excluding PVE-affected curves depends on 
correct isolation of the first-pass of the perfu-
sion curve by gamma-variate fitting. Investiga-
tion of the gamma-variate fitting used in Yin’s 
method showed noticeable fitting errors more 
computational burden. Instead, in this study, 
we used a simplified form of the gamma-vari-
ate fitting. This simplified gamma-variate fit-
ting was faster and statistical analysis showed 
higher accuracy. As a result, using this fitting 
can increase the accuracy of excluding PVE-
affected curves. Finally, AH clustering was ap-
plied and AIF was automatically determined. 

Our new proposed method with improved 
preprocessing steps showed more accurate 
results for AIF selection in comparison with 
Yin’s method and the errors remarkably de-
creased. This improvement in the results can 
be due to adopt new preprocessing steps for 
correcting truncated curves, eliminating noisy 
curves with new conditions, using more arte-
rial concentration curve characteristics, such 
as maximum peak, FWHM, and time to peak 
for discarding more non-arterial curves, and 
employing a new simplified gamma-variate 
function for correction of recirculation peak. 

However, our work had some limitations. 
First, images of some patients had been ac-
quired with fewer slices, which complicated 
identification of the slice containing large ar-
teries, i.e. MCA and ICA. Second, our study 

population was limited to 43 brain tumor pa-
tients. Generalizing this method to clinical ap-
plications, requires assessments of the tech-
nique on larger patient populations including 
more diverse diseases, like acute stroke, arte-
rial stenosis and other brain disorders. 

Conclusion
In the present study, we developed a new 

automatic AIF selection framework for quan-
tification of DSC-MR images of brain tumor 
patients by using new preprocessing steps and 
AH clustering method. It was shown that the 
AIF obtained by our method is in agreement 
with manually-selected AIF, and has the po-
tential to produce robust and accurate quanti-
fication of perfusion.
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