
RESEARCH ARTICLE

Multi-parametric (ADC/PWI/T2-w) image fusion approach
for accurate semi-automatic segmentation of tumorous regions
in glioblastoma multiforme

Anahita Fathi Kazerooni • Meysam Mohseni •

Sahar Rezaei • Gholamreza Bakhshandehpour •

Hamidreza Saligheh Rad

Received: 27 May 2013 / Revised: 11 March 2014 / Accepted: 11 March 2014

� ESMRMB 2014

Abstract

Object Glioblastoma multiforme (GBM) brain tumor is

heterogeneous in nature, so its quantification depends on

how to accurately segment different parts of the tumor, i.e.

viable tumor, edema and necrosis. This procedure becomes

more effective when metabolic and functional information,

provided by physiological magnetic resonance (MR) imag-

ing modalities, like diffusion-weighted-imaging (DWI) and

perfusion-weighted-imaging (PWI), is incorporated with the

anatomical magnetic resonance imaging (MRI). In this pre-

liminary tumor quantification work, the idea is to charac-

terize different regions of GBM tumors in an MRI-based

semi-automatic multi-parametric approach to achieve more

accurate characterization of pathogenic regions.

Materials and methods For this purpose, three MR

sequences, namely T2-weighted imaging (anatomical MR

imaging), PWI and DWI of thirteen GBM patients, were

acquired. To enhance the delineation of the boundaries of

each pathogenic region (peri-tumoral edema, viable tumor

and necrosis), the spatial fuzzy C-means algorithm is

combined with the region growing method.

Results The results show that exploiting the multi-para-

metric approach along with the proposed semi-automatic

segmentation method can differentiate various tumorous

regions with over 80 % sensitivity, specificity and dice

score.

Conclusion The proposed MRI-based multi-parametric

segmentation approach has the potential to accurately

segment tumorous regions, leading to an efficient design of

the pre-surgical treatment planning.

Keywords Multi-parametric MRI � Segmentation �
Glioblastoma multiforme

Introduction

Glioblastoma multiforme (GBM) brain tumor is the

most aggressive form of primary brain tumors with a

poor prognosis, for which the survival duration is

usually between 6 and 12 months [1]. Magnetic res-

onance imaging (MRI) has proven to be a powerful

tool to provide non-invasive imaging features, such as

the extent of tumor invasion and the amount of

necrosis and edema, using multiple spectral images.

These imaging variables could serve as prognostic

indicators of patient survival, which aid in better

decision making about the treatment design and

improved patient outcome [2]. The extent of necrosis

and the amount of peri-tumoral edema have been

reported to be negatively correlated with survival [3,

4]. Quantitative assessment of different regions of

GBM tumor, namely viable tumor, necrosis, and peri-

tumoral edema have shown to be predictive of overall
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survival and allow surgeons and neuro-oncologists to

determine the necessity of aggressive tumor resection

and/or extensive radiotherapy or chemotherapy based

on accurate mapping of tumor invasion [5].

Conventionally, the viable tumorous region is defined as

the enhancing region observed in the contrast-enhanced T1-

weighted (T1-w) images, and the peri-tumoral edema is

usually defined as the hyperintensity portion on T2-weighted

(T2-w) or FLAIR images, located outside the enhancing area

[6]. GBM tumors are highly infiltrative, so, there exists the

possibility of tumor invasion in the surrounding tissue and

peri-tumoral edema, which, if not resected or destroyed,

could increase the probability of tumor recurrence [7]. Also,

it is known that GBM tumor is surrounded by a mixture of

cytotoxic and vasogenic edema: the former is reversible and

could be preserved, while the latter could not be recovered

[8]. Although exploiting the mentioned magnetic resonance

(MR) imaging modalities could improve the treatment out-

come, they can include recoverable tissues (like vasogenic

edema) in their tumor detection, while they might miss some

parts of tumor infiltration. On the other hand, vasogenic

edema in the brain may modestly enhance after contrast

administration due to local inflammation in the blood–brain

barrier, which makes the local vessels relatively leaky and

may be a source of error when one attempts to delineate the

exact interface between edema and the tumor in T1-w images

with contrast enhancement (T1-w?C).

Numerous recent studies have recommended incorpo-

rating additional imaging biomarkers adopted from diffu-

sion-weighted imaging (DWI) and perfusion-weighted

imaging (PWI) modalities, which provide deeper insight

about the physiological behavior of brain glial tumors [9–

11]. The apparent diffusion coefficient (ADC) values cal-

culated by DWI reflect the extent of diffusion restriction in

the tissue under investigation: the necrosis and the edem-

atous regions can be identified by higher ADC values.

However, T2-w MRI has been reported to be more suc-

cessful in characterizing the boundaries of peri-tumoral

edema than DWI [10, 12]. Despite this, the specified peri-

tumoral area on a T2-w image may still contain tumor

cells. The regional cerebral blood volume (rCBV) param-

eter calculated from PWI has shown high correlation with

angiogenesis and tumor aggressiveness, and can be used to

reliably identify the tumor margins [12].

As the number of images increase, accurate identifica-

tion of tumorous regions for pre-surgical planning becomes

more complicated, time-consuming, prone to intra- and

inter-observer variability, and can hardly be reproduced

[13]. Recently, several segmentation methods have been

proposed for characterization of different brain tumor

compartments: region-based active contour models [14–

16], clustering-based segmentation techniques, such as

k-nearest neighbor [17], knowledge-based fuzzy C-means

(FCM) clustering [18–21] or classification approaches [7,

22, 23], which have shown promise in terms of reduced

intra- and inter-observer variability and time efficiency [24,

25]. Nevertheless, segmentation of tumor tissues remains a

challenging issue, since borders of the heterogeneous

tumor and its surrounding tissue are not well-defined in

many cases and partial volume effects and MRI inherent

noise could complicate the delineation of various regions

of the GBM tumor [19]. Considering the aforementioned

issues, here we exploit a knowledge-based spatial FCM

clustering approach in a multi-parametric (ADC, rCBV-

map and T2-w) MRI fusion framework to differentiate

various tumorous regions.

Materials and methods

Data acquisition

The images for this experiment were acquired from 13

patients being diagnosed with GBM tumor with histopathol-

ogical assessment, based on the World Health Organization

(WHO) classification system, after MR imaging followed by

surgery. The MR data for each patient were acquired on a 3T

MR scanner (Siemens MAGNETOM Tim TRIO, Erlangen,

Germany) using four-channel 3T Siemens head-coil, with a

standard glioma imaging protocol. The protocol consisted of a

whole-brain axial T2-w using fast spin-echo sequence with

TE/TR = 96/5,000 ms, image matrix = 308 9 384,

FOV = 17.6 9 21.9 cm2, slice thickness = 6 mm; a PWI

sequence acquired by a gradient-echo echo-planar imaging

sequence with: TE/TR = 45/2,340 ms, flip angle = 60�,

image matrix = 128 9 128, FOV = 23 9 23 cm2, slice

thickness = 5 mm, number of measurements = 50 at 1

s/volume and number of slices = 21. The acquisition was

performed before and immediately after injection of 15 cc of

Gd-DTPA (0.2 mmol/kg) as the contrast agent with a flow rate

of 5 ml/s, followed by injection of 20 cc of normal saline

solution; and finally a DWI sequence acquired with gradient-

echo echo-planar imaging protocol with the following

parameters: TE/TR = 137/4,300 ms, image matrix =

192 9 192, FOV = 22 9 22 cm2, number of slices = 21,

slice thickness = 5 mm, b-values of 0 and 1,000 s/mm2 in

three orthogonal directions.

Image pre-processing and analysis

Image pre-processing and quantitative map generation

Apparent diffusion coefficient (ADC)-maps were calculated

on a voxel-by-voxel basis from the original DW images with

software on Siemens imaging workstation. In order to reduce

the noise while preserving the edges, an anisotropic diffusion
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filter was applied on the T2-w images. Intensity corrections

were not performed on PWI images, to not eliminate the

bolus signal. PW images were corrected for any possible

movement during the imaging session, employing a nor-

malized mutual information affine algorithm, and were then

processed by an in-house software package developed in

MATLAB2013 (MathWorks, Natick, MA). Brain pixels

were isolated from the non-brain pixels in T2-w, DWI and

PWI images by generating a brain mask with a skull-strip-

ping algorithm in Statistical Parametric Mapping (SPM8)

software (http://www.fil.ion.ucl.ac.uk/spm/) [26]. Quantita-

tive analysis of tissue perfusion was performed employing

established tracer kinetic models [27, 28].

Then, T2-w images, ADC and rCBV maps were co-

registered using a standard three-dimensional (3D) cubic

B-spline transformation algorithm with normalized mutual

information cost function in SPM8 software [29].

Semi-automatic segmentation

Knowledge-based spatial fuzzy C-means (FCM) clustering

algorithm

Medical images are inherently fuzzy and can be considered

as combinations of intensities belonging to the various

tissue types beside other unwanted intensities. Thus, it is of

paramount importance to take this property into account.

Spatial FCM is an unsupervised clustering method utilized

in medical image segmentation [30]. This technique tries to

iteratively partition the image pixels into C clusters, by

minimizing the following cost function:

JFCM ¼
XC

m¼1

XN

n¼1

ll
mn pn � cmk k2; ð1Þ

where N denotes the total number of image pixels, C is the

number of clusters, pn and cm respectively represent the image

pixel and the centroid of the mth cluster, ||.|| is the norm, lmn is

the membership function, which can be computed by:

lmn ¼
pn � cmk k�2=ðl�1Þ

PC
k¼1 pn � cmk k�2=ðl�1Þ ð2Þ

with l [ 1 (l controls the degree of fuzziness). The cen-

troids are updated iteratively using

ci ¼
PN

n¼1 ll
mninPN

n¼1 ll
mn

ð3Þ

The membership function must satisfy the following

relations:

XC

m¼1

lmn ¼ 1; 0� lmn� 1;
XN

n¼1

lmn [ 0: ð4Þ

The algorithm is ideally optimized when high membership

values are achieved in pixels with close proximity to the

centroid, while pixels that are far apart have low values. In

this application, due to heterogeneous GBM tumor margins

with surrounding tissue, specifically in the quantitative

maps, a knowledge-based FCM algorithm is employed to

create several clusters for each image, as follows (Fig. 1):

• T2-w images are classified into four clusters: tissues

with hyperintensity values (necrosis), tissues with

intermediate intensity (cerebrospinal fluid (CSF) and

edema), tissues with hypointensity values (normal

white and gray matter, scalp), and with very low or

zero intensity (skull, background);

• rCBV maps are classified into two clusters: tissues with

high perfusion (including viable tumor), and tissues

with low perfusion (including necrosis);

• ADC maps are classified into four clusters: tissues with

high ADC values (CSF), with intermediate ADC values

(vessels and pathogenic region excluding necrosis),

with low ADC (normal white matter, gray matter, and

Fig. 1 Schematic flow diagram

of knowledge-based tumor

clustering. Before clustering,

images are pre-processed to

eliminate noise, inter-slice

motion and to exclude brain

tissue from the background. The

generated quantitative maps

(ADC and rCBV) are registered

to the anatomical T2-w images
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necrosis), and with very low ADC (background and

skull).

Region growing (RG) algorithm

One of the most commonly used region-based methods for

image segmentation is the region growing (RG) approach,

which starts with selecting n seed points. The regions start

growing from there by seeking for neighboring pixels

meeting the similar criteria as the seed points. The simi-

larity criterion is defined based on texture, homogeneity,

topology or other properties of the image. RG method has

several advantages in medical image segmentation context,

such as its good performance in the presence of noise, the

capability to separate the regions with similar properties,

and its simple concept [31].

Here, we use RG approach to merge adjacent pixels

belonging to the same cluster. We used the criteria of mean

intensity of the seed points. The neighboring pixels are

added to the current region if their intensities are nearest to

the mean of the region and less than a predefined threshold.

The initial seed point in the desired cluster is selected

manually in the region where the membership degree is one.

FCM–RG method for tumorous tissue characterization

Hereafter, the overall segmentation algorithm is referred to

as the FCM–RG method. The procedure is carried out as

follows (Fig. 2):

• FCM clustering of the ADC and T2-w images, followed

by application of RG with some morphological image

processing methods to create individual pathogenic

masks (P1 and P2), to be added to generate the final

pathogenic mask (P),

• FCM clustering of rCBV map, followed by employing

RG to one of the clusters to segment the initial necrosis

(N1) and to the other one to separate the initial viable

tumorous region (T1),

• Take the intersection of each of N1 and T1 regions with

P, to obtain final necrosis (N) and viable tumor

(T) masks,

• Exclude the T and N pixels from P, to obtain pure

edema area (E), with no tumor invasion.

Ground truth for evaluation

To evaluate the performance of the segmentation algorithm,

the MR images were manually segmented by an expert

neuroradiologist blinded to the automatic segmentation

procedure. The neuroradiologist outlined the borders of each

of the tumorous regions for the ground truth assessment

based on the widely accepted knowledge: pathogenic region

as hyperintense region on the T2-w and ADC map, and

tumor vascularization was defined on the rCBV map and the

edema as the non-CSF hyperintensity region on T2-w in the

periphery of the tumor (compared to the rCBV map). As the

manual segmentation was prone to errors (the manually

segmented regions could contain overlapping pixels), a

Fig. 2 Schematic flow diagram of the image fusion approach. The

overall pathogenic region is obtained by the summation of the

segmented pathogenic regions in the T2-w image and ADC map. The

initial viable tumor and necrosis regions are segmented out from the

rCBV map, and finally segmented by excluding high-perfusion non-

tumor regions adjacent to the viable tumor through intersection of the

pathogenic region with initial enhancing and necrosis. Then, the pure

edema is obtained by separating the necrosis and viable tumor from

the overall pathogenic region
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further refinement step was applied (Fig. 3). The refinement

was as follows: (1) the overlaps of the segmented tumor

vascularization and edema with the pathogenic region were

taken, to exclude non-pathogenic tumor or edema regions;

(2) the necrosis was specified as the region inside the vas-

cularized tumor; (3) the specified tumor pixels were exclu-

ded from the edema region; and finally, (4) the ground truth

pathogenic, viable tumor, necrosis, and edema regions were

generated. The manual segmentation results were consid-

ered as the ground truth. Then, the sensitivity, specificity and

Dice similarity criteria [32] were calculated for each case

and averaged over all cases to obtain the ultimate values.

Results

Figure 4 illustrates the results of spatial FCM clustering

on a T2-w image of one of the cases. Four classes of

tissue have been generated: a hyperintensity region

including part of necrosis, hypointensity regions includ-

ing the background and skull, tissues appearing with

relatively high signals on T2-w image, such as edema,

part of normal gray matter and CSF, and finally tissues

with relatively low signal intensity, like white matter and

scalp. Similarly, in Fig. 5, the ADC-map is clustered into

four classes: high ADC values (like necrosis and parts of

CSF), non-brain pixels (background), regions with rela-

tively high ADC values (edema, normal brain tissue, and

partly active tumor), and regions with relatively low

ADC (normal brain tissue and partly edema and active

tumor). Finally, as shown in Fig. 6, the rCBV map is

divided into two clusters: one with high rCBV values like

viable tumor (angiogenesis) and vessels, and the other

one with lower rCBV values like necrosis, edema and

normal brain tissue.

Table 1 provides the evaluation results of the spatial

FCM–RG method in identifying the whole pathogenic

region and several tumorous regions, namely peri-tumoral

edema, viable tumor and necrosis. As it can be inferred, the

method shows good segmentation outcome (over 80 % of

sensitivity, specificity and dice score in almost all of the

regions). In Fig. 7, the results of segmentation using FCM–

RG in multi-parametric data and the manual segmentation

results in one of the cases are illustrated. Figure 7a–c

demonstrates the T2-w image and corresponding ADC and

rCBV maps, and Fig. 7d–g indicates the segmentation

results overlaid on the T2-w image with the delineated

borders on Fig. 7(h). The manual segmentation results and

the acquired boundaries are illustrated in Fig. 7i–m. It can

be observed that the results are visually satisfying.

Discussion

Generally, GBM tumor is heterogeneous and the borders

between the tumor and edema are not well defined, and

due to tumor infiltration, the edema region could contain

tumor cells. Thus, accurate differentiation of the path-

ological regions becomes difficult. This issue becomes

essentially important in pre-surgical treatment planning

procedures, where it is important to resect as much of

the tumorous tissue as possible, and at the same time,

avoid removing uncontaminated tissue [2]. MRI has

proven to be a powerful tool to provide diverse infor-

mation about the patient-specific tumor structure and

physiology using multiple spectral images. As a tumor

consists of different biological tissues with different

appearances on MR images, radiologists usually com-

bine multi-parametric information obtained by multi-

spectral MR acquisitions. This process is dependent on

Fig. 3 Schematic flow graph of

generating the ground truth

segmentation. The manually

segmented pathogenic, viable

tumor, and necrosis and edema

were refined to exclude

overlapping pixels based on the

illustrated figure
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the manual tracing by a radiology expert in 3D for all

MR modalities, which is time-consuming, exhausting

and prone to both intra- and inter-rater errors. As the

number of images to provide more comprehensive data

on a tumor increases, the difficulties with expert-related

segmentations become more serious [13]. Hence,

accurate and robust tumor segmentation has been a

subject of many segmentation studies in recent years,

and different segmentation approaches have been car-

ried out and reported in the literature [13, 24].

The proposed glioma segmentation methods can

generally be divided into region-based or edge-based,

Fig. 4 The results of spatial FCM clustering procedure in T2-w

image of a patient (a), and four clusters of the tissue: (b) hyperinten-

sity regions including necrosis; c hypointensity non-brain pixels

including skull and background; d relatively high signal regions

including edema and CSF; and e relatively low signal regions

comprising normal brain tissue. In these images, the pixel values are

continuously scaled from 0 to 1, indicating the degree of pixel

membership to each cluster

Fig. 5 The results of spatial FCM clustering procedure in ADC-map

of a patient (a), and four clusters of the tissue: b regions with high

ADC values including necrosis and partly CSF; c non-brain pixels

such as background; d regions with relatively high ADC values

comprising of some parts of CSF and normal gray matter, edema and

partly viable tumor; and e regions with relatively low ADC values

including normal brain tissue, partly viable tumor and edema. In these

images, the pixel values are continuously scaled from 0 to 1,

indicating the degree of pixel membership to each cluster

Fig. 6 The results of spatial FCM clustering procedure in rCBV-map

of a patient (a), and two clusters of the tissue: b regions with low

rCBV values, including necrosis, normal tissue, and non-brain pixels

like background; c regions with high rCBV values, like viable tumor

and vessels. In these images, the pixel values are continuously scaled

from 0 to 1, indicating the degree of pixel membership to each cluster
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and clustering or classification approaches, each having

potentials and limitations. Region-based or edge-based

methods employ a level-set in most of the cases to be

evolved toward the tumor boundary by searching for the

largest gradient in the image regarding the image

intensity or region properties [15]. These methods,

while being advantageous in reducing the expert’s labor

for manual segmentation, rely on the signal intensity

and the boundaries of the image objects; hence, they can

only be applied on the anatomical images and are not

proper to be applied on the parametric maps like ADC

maps or rCBV maps. However, numerous studies have

reported detection of brain tumor outside the regions

specified by conventional MRI [33], which require

physiological MRI techniques, such as PWI and DWI to

be identified.

Table 1 Evaluation of the segmentation outcomes in each region

(using FCM–RG method on multi-parametric data)

Dice score

mean (SD)

Sensitivity

mean (SD)

Specificity

mean (SD)

Pathogenic 0.89 (0.05) 0.9 (0.02) 0.89 (0.07)

Viable tumor 0.84 (0.06) 0.87 (0.03) 0.83 (0.08)

Necrosis 0.92 (0.04) 0.8 (0.07) 0.98 (0.01)

Edema 0.9 (0.04) 0.87 (0.08) 0.94 (0.03)

Fig. 7 a T2-w image, b ADC map (b-value = 1,000), c rCBV map;

segmentation results of the FCM–RG algorithm: d pathogenic,

e viable tumor, f necrosis, and g edema masks overlaid on T2-w

image, h the segmentation boundaries (yellow pathogenic, blue

edema, pink viable tumor, and green necrosis areas); and

segmentation results of ground truth segmentation method: i patho-

genic, j viable tumor, k necrosis, and l edema regions overlaid on

T2-w image, m the ground truth segmentation boundaries (yellow

pathogenic, blue edema, pink viable tumor, and green necrosis areas)
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Many of the proposed segmentation algorithms are

based on classification or clustering approaches, which can

handle a pile of information provided by various spectral

images. Jensen and Schmainda [7] compared the efficacy

of four classifiers to detect brain tumor invasion from

structural, diffusion tensor and perfusion images. Verma

et al. [34] used a large number of MRI modalities con-

sisting of structural images and diffusion tensor images

(DTI) to classify a feature space based on voxel-wise

intensity-based feature vectors employing support vector

machine (SVM) classifiers. Zollner et al. [35] classified

brain tumors by employing support vector machines

(SVM) with reduced feature reduction techniques, such as

Pearson’s correlation coefficients (PCC), principal com-

ponent analysis (PCA) and independent component ana-

lysis (ICA). These approaches have several limitations: (1)

they are mostly based on intensity information, and hence

require accurate intensity normalization (standardization)

and do not incorporate texture and spatial patient-specific

information of heterogeneous glioma tumors; (2) they

require a large number of modalities, including overlapping

information (thus a large feature space) to be incorporated

to achieve more reliable segmentation accuracy, and

impose a high computational burden, which is not plausible

in clinical settings [13]. There have been several attempts

to integrate these classification methods with additional

constraints, like the work by Weizman et al. [36], which

used localization based on an atlas in multi-parametric

segmentation in a probabilistic tissue model classification

framework. Gooya et al. [37] introduced a joint registra-

tion-segmentation approach implemented in GLISTR

software for segmentation of brain tumors while the images

are registered to an atlas, for which they did not employ

functional information from DWI and PWI.

Segmentation of tumor tissues is still a challenge, as the

tumors differ greatly in their size, location, tissue hetero-

geneity and composition (hence different intensity

appearance on multiple images). This has been a main

motivation for organizers of the Medical Image Computing

and Computer Assisted Intervention (MICCAI) conference

in the last few years to establish a Multimodal Brain Tumor

Segmentation (BRATS) challenge in conjunction with the

conference. The BRATS database is composed of struc-

tural MR images along with the ground truth segmentation

for evaluating and comparing the methods proposed by

several researchers in segmenting GBM tumors into vari-

ous regions, i.e. some of the following regions: complete

tumor (tumor core and edema), enhancing tumor, edema

and necrosis. As examples, the results of using only the

multi-modal structural images have shown Dice overlap of

73 % for complete tumor and 64 % for enhancing tumor by

the ‘‘Grouping Artificial Immune Network’’ approach [38],

and Dice score of 0.83, 0.7, and 0.75 for complete tumor,

tumor core (necrosis, non-enhancing tumor and enhancing

tumor) and enhancing tumor, respectively, by using

‘‘Random Decision Forests’’ [38].

By considering the issues of GBM tumor segmentation,

here we proposed a knowledge-based multi-parametric

fusion technique employing spatial fuzzy clustering to take

into account the intensity, spatial and heterogeneous

properties of GBM tumors, while incorporating a small

number of images providing comprehensive complemen-

tary information. Our aim was to use an optimal combi-

nation of images with the least possible number of images,

while preserving the ability to indicate tumor invasion. The

fuzzy models are created based on a priori knowledge

provided by expert radiologists: a pathogenic region man-

ifests as a region with hyperintensity on T2-w image, a

vascularized viable tumor can be characterized as hyper-

intensity on an rCBV map (which is superior to post-con-

trast T1-w image, since the T1-w?C demonstrated blood-

brain-barrier leakage as a late ring enhancement, while

vasogenic edema may modestly enhance due to the

inflammation), and an ADC map could provide additional

information about peri-tumoral (both vasogenic and cyto-

toxic) edema. Finally, a region-growing algorithm is

incorporated to fine-tune the coarse segmentation from the

spatial fuzzy clustering step. In this step, a region-con-

nection process is applied to merge the adjacent voxels

whose membership values belong to the same group.

As the results of quantitative assessment indicate, the

proposed method returns more than 80 % of specificity,

sensitivity and Dice score in segmentation of different parts

of the tumor, which is promising for brain tumor seg-

mentation in comparison with similar works, which employ

multi-parametric structural images [38].

Conclusion

In this work, spatial fuzzy C-means (FCM) clustering

algorithm was used in combination with region growing

(RG) method, referred to as FCM–RG algorithm, to take

the fuzzy behavior of the GBM tumor border into account

and to take advantage of the RG segmentation method,

including its good performance in the presence of noise and

capability to correctly separate the regions.

Although the results are promising to detect invading tumor

cells, which are not visible on conventional MRI, histological

assessment is required to validate the performance of the

algorithm in identifying tumor invasion and angiogenesis.

Further validation of this work shall be performed by using a

larger sample size data, and in order to explore its robustness to

inter-patient variations of GBM tumors.

In conclusion, the combination of information pro-

vided by anatomical as well as physiological MRI
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modalities in a multi-parametric framework (T2-w, PWI

and DWI) is beneficial in accurate characterization of

pathological regions in GBM brain tumors, which could

not be achieved by exclusively using the anatomical

MRI.
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